A288110 Number of Dyck paths of semilength n such that each level has exactly three peaks or no peaks.
1, 0, 0, 1, 1, 3, 4, 10, 36, 83, 225, 573, 1444, 3996, 11840, 34057, 95573, 267643, 754744, 2167250, 6347944, 18754719, 55183269, 161366349, 471263668, 1382569548, 4085677052, 12145287569, 36193473369, 107824201547, 320874528844, 954819540526, 2845349212512
Offset: 0
Keywords
Examples
a(5) = 3: . /\/\/\ . /\ /\/\ /\/\ /\ / \ . / \/ \ / \/ \ / \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Crossrefs
Column k=3 of A288108.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 3$2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n-j, k, i]*(Binomial[j-1, i-1] + Binomial[i, k]*Binomial[j-1, i-1-k]), {i, 1, Min[j+k, n-j]}]]; a[n_] := If[n == 0, 1, b[n, 3, 3]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 02 2018, from Maple *)