A288114 Number of Dyck paths of semilength n such that each level has exactly seven peaks or no peaks.
1, 0, 0, 0, 0, 0, 0, 1, 1, 7, 22, 48, 93, 180, 331, 575, 1150, 3578, 13268, 50808, 217173, 881980, 3064454, 9169075, 24605669, 61450068, 147038896, 347902716, 860591396, 2411664484, 8038395295, 30845855094, 126173520602, 513951305502, 1996531969713
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Counting lattice paths
Crossrefs
Column k=7 of A288108.
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(n=j, 1, add( b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k) *binomial(j-1, i-1-k)), i=1..min(j+k, n-j))) end: a:= n-> `if`(n=0, 1, b(n, 7$2)): seq(a(n), n=0..40);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]]; a[n_] := If[n == 0, 1, b[n, 7, 7]]; Table[a[n], {n, 0, 40}](* Jean-François Alcover, Jun 02 2018, from Maple *)