cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288120 Number of partitions of n into distinct pentanacci numbers (with a single type of 1) (A001591).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Comments

The first occurrences of 1, 2, 3, 4, 5, ... are at n=0, 31, 912, 1824, 26815, ... - Antti Karttunen, Dec 22 2017

Examples

			a(31) = 2 because we have [31] and [16, 8, 4, 2, 1].
		

Crossrefs

Programs

  • PARI
    A001591(n) = { if(n<=3,return(0)); my(p0=0,p1=0,p2=0,p3=1,p4=1,old_p0); while(n>5,n--;old_p0=p0;p0=p1;p1=p2;p2=p3;p3=p4;p4=old_p0+p0+p1+p2+p3;); p4; }
    v288120nthgen(up_to) = { my(k=6,fk,vec = [1],vec2); while(k<=up_to, fk = A001591(k); k++; vec2 = vector(length(vec)+fk,i,(i==fk)+if(i>fk,vec[i-fk],0)+if(i<=length(vec),vec[i],0)); vec = vec2); vector(fk,i,vec[i]); }
    write_to_bfile_with_a0_as_given(a0,vec,bfilename) = { write(bfilename, 0, " ", a0); for(n=1, length(vec), write(bfilename, n, " ", vec[n])); }
    write_to_bfile_with_a0_as_given(1,v288120nthgen(21),"b288120.txt"); \\ Antti Karttunen, Dec 22 2017
    
  • Scheme
    (define (A288120 n) (let ((s (list 0))) (let fork ((r n) (i 5)) (cond ((zero? r) (set-car! s (+ 1 (car s)))) ((> (A001591 i) r) #f) (else (begin (fork (- r (A001591 i)) (+ 1 i)) (fork r (+ 1 i)))))) (car s)))
    ;; This one uses memoization-macro definec
    (definec (A001591 n) (cond ((<= n 3) 0) ((= 4 n) 1) (else (+ (A001591 (- n 1)) (A001591 (- n 2)) (A001591 (- n 3)) (A001591 (- n 4)) (A001591 (- n 5))))))
    ;; Antti Karttunen, Dec 22 2017

Formula

G.f.: Product_{k>=5} (1 + x^A001591(k)).

Extensions

More terms from Antti Karttunen, Dec 22 2017