cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288126 Number of partitions of n-th triangular number (A000217) into distinct triangular parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 4, 7, 6, 4, 14, 15, 19, 31, 28, 43, 57, 80, 103, 127, 181, 234, 295, 398, 539, 663, 888, 1178, 1419, 1959, 2519, 3102, 4201, 5282, 6510, 8717, 11162, 13557, 18108, 22965, 28206, 36860, 46350, 58060, 73857, 93541, 117058, 147376, 186158, 232949, 292798, 365639
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Examples

			a(4) = 2 because 4th triangular number is 10 and we have [10], [6, 3, 1].
		

Crossrefs

Programs

  • Maple
    N:= 100:
    G:= mul(1+x^(k*(k+1)/2),k=1..N):
    seq(coeff(G,x,n*(n+1)/2),n=0..N); # Robert Israel, Jun 06 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + x^(k (k + 1)/2), {k, 1, n}], {x, 0, n (n + 1)/2}], {n, 0, 54}]

Formula

a(n) = [x^(n*(n+1)/2)] Product_{k>=1} (1 + x^(k(k+1)/2)).
a(n) = A024940(A000217(n)).