A288126 Number of partitions of n-th triangular number (A000217) into distinct triangular parts.
1, 1, 1, 1, 2, 1, 2, 3, 2, 4, 7, 6, 4, 14, 15, 19, 31, 28, 43, 57, 80, 103, 127, 181, 234, 295, 398, 539, 663, 888, 1178, 1419, 1959, 2519, 3102, 4201, 5282, 6510, 8717, 11162, 13557, 18108, 22965, 28206, 36860, 46350, 58060, 73857, 93541, 117058, 147376, 186158, 232949, 292798, 365639
Offset: 0
Keywords
Examples
a(4) = 2 because 4th triangular number is 10 and we have [10], [6, 3, 1].
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Triangular Number
- Index to sequences related to polygonal numbers
- Index entries for related partition-counting sequences
Programs
-
Maple
N:= 100: G:= mul(1+x^(k*(k+1)/2),k=1..N): seq(coeff(G,x,n*(n+1)/2),n=0..N); # Robert Israel, Jun 06 2017
-
Mathematica
Table[SeriesCoefficient[Product[1 + x^(k (k + 1)/2), {k, 1, n}], {x, 0, n (n + 1)/2}], {n, 0, 54}]