cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A298858 Number of ordered ways of writing n-th triangular number as a sum of n nonzero triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 4, 11, 86, 777, 4670, 36075, 279482, 2345201, 21247326, 197065752, 1983741228, 20769081251, 228078253168, 2604226354265, 30880251148086, 379415992755572, 4818158748326064, 63116999199457944, 851467484377802094, 11811530978240316682, 168243449082524484856
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(4) = 4 because fourth triangular number is 10 and we have [3, 3, 3, 1], [3, 3, 1, 3], [3, 1, 3, 3] and [1, 3, 3, 3].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8)) - 1)^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k*(k+1)/2))^n.

A298857 Number of partitions of the n-th tetrahedral number into distinct tetrahedral numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 5, 5, 10, 12, 17, 15, 22, 30, 56, 65, 72, 92, 172, 219, 299, 368, 478, 810, 1055, 1508, 1778, 2277, 3815, 5214, 7103, 8615, 11614, 18079, 24428, 33704, 42877, 56639, 85597, 116984, 159179, 199356, 268965, 400612, 545674, 740356, 950897, 1261597, 1842307
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2018

Keywords

Examples

			a(5) = 2 because fifth tetrahedral number is 35 and we have [35] and [20, 10, 4, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1 + x^(k (k + 1) (k + 2)/6), {k, 1, n}], {x, 0, n (n + 1) (n + 2)/6}], {n, 0, 53}]

Formula

a(n) = [x^A000292(n)] Product_{k>=1} (1 + x^A000292(k)).
a(n) = A279278(A000292(n)).

A307614 Number of partitions of the n-th triangular number into consecutive positive triangular numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			A000217(4) = 10 = 1 + 3 + 6, so a(4) = 2.
		

Crossrefs

Formula

a(n) = [x^(n*(n+1)/2)] Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k*(k+1)/2).

A337763 Number of partitions of the n-th n-gonal number into distinct n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 4, 4, 2, 2, 4, 7, 8, 5, 6, 14, 6, 13, 23, 16, 19, 32, 34, 48, 56, 62, 73, 137, 126, 203, 257, 256, 409, 503, 612, 794, 1097, 1203, 1737, 2141, 2773, 3322, 4527, 5087, 7497, 8214, 11238, 12598
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2020

Keywords

Examples

			a(5) = 2 because 5th pentagonal number is 35 and we have [35] and [22, 12, 1].
		

Crossrefs

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k * (n - 2) - n + 4) / 2 is the k-th n-gonal number.

A337798 Number of partitions of the n-th n-gonal pyramidal number into distinct n-gonal pyramidal numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 4, 5, 4, 5, 7, 11, 9, 4, 12, 12, 24, 23, 42, 59, 64, 58, 124, 206, 212, 168, 377, 539, 703, 873, 1122, 1505, 1943, 2724, 4100, 4513, 6090, 7138, 12079, 16584, 20240, 27162, 35874, 52622, 69817, 88059, 115628, 152756, 219538, 240200, 358733, 480674
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 22 2020

Keywords

Examples

			a(9) = 2 because the ninth 9-gonal pyramidal number is 885 and we have [885] and [420, 266, 155, 34, 10].
		

Crossrefs

Programs

  • Maple
    p:= (n,k) ->  k * (k + 1) * (k * (n - 2) - n + 5) / 6:
    f:= proc(n) local k, P;
      P:= mul(1+x^p(n,k),k=1..n);
      coeff(P,x,p(n,n));
    end proc:
    map(f, [$0..80]); # Robert Israel, Sep 23 2020
  • PARI
    default(parisizemax, 2^31);
    p(n,k) = k*(k + 1)*(k*(n-2) - n + 5)/6;
    a(n) = my(f=1+x*O(x^p(n,n))); for(k=1, n, f*=1+x^p(n,k)); polcoeff(f, p(n,n)); \\ Jinyuan Wang, Dec 21 2021

Formula

a(n) = [x^p(n,n)] Product_{k=1..n} (1 + x^p(n,k)), where p(n,k) = k * (k + 1) * (k * (n - 2) - n + 5) / 6 is the k-th n-gonal pyramidal number.

Extensions

More terms from Robert Israel, Sep 23 2020

A299032 Number of ordered ways of writing n-th triangular number as a sum of n squares of positive integers.

Original entry on oeis.org

1, 1, 0, 3, 6, 0, 12, 106, 420, 2718, 18240, 120879, 694320, 5430438, 40668264, 300401818, 2369504386, 19928714475, 174151735920, 1543284732218, 14224347438876, 135649243229688, 1331658133954940, 13369350846412794, 138122850643702056, 1462610254141337590
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(4) = 6 because fourth triangular number is 10 and we have [4, 4, 1, 1], [4, 1, 4, 1], [4, 1, 1, 4], [1, 4, 4, 1], [1, 4, 1, 4] and [1, 1, 4, 4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; local i; if n=0 then
          `if`(t=0, 1, 0) elif t<1 then 0 else 0;
          for i while i^2<=n do %+b(n-i^2, t-1) od; % fi
        end:
    a:= n-> b(n*(n+1)/2, n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Feb 05 2018
  • Mathematica
    Table[SeriesCoefficient[(-1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 25}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=1} x^(k^2))^n.

A338585 Number of partitions of the n-th triangular number into exactly n positive triangular numbers.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 9, 16, 29, 52, 92, 173, 307, 554, 1002, 1792, 3216, 5738, 10149, 17942, 31769, 55684, 97478, 170356, 295644, 512468, 886358, 1523779, 2614547, 4476152, 7627119, 12966642, 21988285, 37142199, 62591912, 105215149, 176266155, 294591431
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 08 2020

Keywords

Examples

			The 5th triangular number is 15 and 15 = 1 + 1 + 1 + 6 + 6 = 3 + 3 + 3 + 3 + 3, so a(5) = 2.
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0,
          `if`(issqr(8*n+1), n, h(n-1)))
        end:
    b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
          `if`(i*kn, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
        end:
    a:= n-> (t-> b(t, h(t), n))(n*(n+1)/2):
    seq(a(n), n=0..42);  # Alois P. Heinz, Nov 10 2020
  • Mathematica
    h[n_] := h[n] = If[n < 1, 0, If[IntegerQ@Sqrt[8n+1], n, h[n-1]]];
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0], If[i k < n || k > n, 0, b[n, h[i-1], k] + b[n-i, h[Min[n-i, i]], k-1]]];
    a[n_] := b[#, h[#], n]&[n(n+1)/2];
    a /@ Range[0, 42](* Jean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
  • SageMath
    # Returns a list of length n, slow.
    def GeneralizedEulerTransform(n, a):
        R. = ZZ[[]]
        f = prod((1 - y*x^a(k) + O(x, y)^a(n)) for k in (1..n))
        coeffs = f.inverse().coefficients()
        coeff = lambda k: coeffs[x^a(k)*y^k] if x^a(k)*y^k in coeffs else 0
        return [coeff(k) for k in range(n)]
    def A338585List(n): return GeneralizedEulerTransform(n, lambda n: n*(n+1)/2)
    print(A338585List(12)) # Peter Luschny, Nov 12 2020

Formula

a(n) = [x^A000217(n) y^n] Product_{j>=1} 1 / (1 - y*x^A000217(j)).
a(n) = A319797(A000217(n),n).

A299031 Number of ordered ways of writing n-th triangular number as a sum of n squares of nonnegative integers.

Original entry on oeis.org

1, 1, 0, 3, 18, 60, 252, 1576, 10494, 64152, 458400, 3407019, 27713928, 225193982, 1980444648, 17626414158, 165796077562, 1593587604441, 15985672426992, 163422639872978, 1729188245991060, 18743981599820280, 208963405365941380, 2378065667103672024, 27742569814633730608
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2018

Keywords

Examples

			a(3) = 3 because third triangular number is 6 and we have [4, 1, 1], [1, 4, 1] and [1, 1, 4].
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n (n + 1)/2}], {n, 0, 24}]

Formula

a(n) = [x^(n*(n+1)/2)] (Sum_{k>=0} x^(k^2))^n.

A331900 Number of compositions (ordered partitions) of the n-th triangular number into distinct triangular numbers.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 3, 13, 3, 55, 201, 159, 865, 1803, 7093, 43431, 14253, 22903, 130851, 120763, 1099693, 4527293, 4976767, 7516897, 14349685, 72866239, 81946383, 167841291, 897853735, 455799253, 946267825, 5054280915, 3941268001, 17066300985, 49111862599
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2020

Keywords

Examples

			a(6) = 3 because we have [21], [15, 6] and [6, 15].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; (t->
          `if`(t*(i+2)/3n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2))
        end:
    a:= n-> b(n*(n+1)/2, n, 0):
    seq(a(n), n=0..37);  # Alois P. Heinz, Jan 31 2020
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = With[{t = i(i+1)/2}, If[t(i+2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t > n, 0, b[n-t, i-1, p+1]]]]];
    a[n_] := b[n(n+1)/2, n, 0];
    a /@ Range[0, 37] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

a(n) = A331843(A000217(n)).

Extensions

More terms from Alois P. Heinz, Jan 31 2020
Showing 1-9 of 9 results.