A307666 Number of partitions of n into consecutive positive triangular numbers.
1, 0, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Examples
10 = 1 + 3 + 6, so a(10) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 100: V:= Vector(N): for i from 1 while i*(i+1)/2 <= N do s:= i*(i+1)*(i+2)/6; for j from i-1 to 0 by -1 do t:= j*(j+1)*(j+2)/6; if s-t > N then break fi; V[s-t]:= V[s-t]+1 od; od: convert(V,list); # Robert Israel, Aug 20 2019
Formula
G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(k*(k+1)/2).
Comments