A288161 Denominator of half moments of Rvachëv function.
2, 18, 6, 1350, 270, 23814, 17010, 65063250, 7229250, 9762090030, 4437313650, 8267713725521250, 635977978886250, 81188783595533250, 297692206516955250, 22510683177794610356250, 1564913803803903393750, 40011216302189267004656036250, 10529267447944543948593693750
Offset: 1
Examples
The rationals d(n) are 1/2, 5/18, 1/6, 143/1350, 19/270, ...
Links
- J. Arias de Reyna, An infinitely differentiable function with compact support: Definition and properties, arXiv:1702.05442 [math.CA], 2017.
- J. Arias de Reyna, Arithmetic of the Fabius function, arXiv:1702.06487 [math.NT], 2017.
Programs
-
Mathematica
d[0] = 1; d[n_] := d[n] = Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1)); Table[Denominator[d[n]], {n, 1, 20}]
Formula
Recurrence d(0)=1; d(n)=Sum_{k=0..n-1}(binomial(n+1,k)d(k))/((n+1)*(2^n-1)) with a(n) are the denominators of d(n).
It may also be defined to be the only sequence d(n) with d(0)=1 and such that the function f(x)=Sum_{n>=0} d(n) x^n/n! satisfies x*f(2x)=(e^x-1)*f(x).
Comments