cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288161 Denominator of half moments of Rvachëv function.

Original entry on oeis.org

2, 18, 6, 1350, 270, 23814, 17010, 65063250, 7229250, 9762090030, 4437313650, 8267713725521250, 635977978886250, 81188783595533250, 297692206516955250, 22510683177794610356250, 1564913803803903393750, 40011216302189267004656036250, 10529267447944543948593693750
Offset: 1

Views

Author

Juan Arias-de-Reyna, Jun 06 2017

Keywords

Comments

a(n) is equal to the denominator of the integral over (0,1) of n*t^(n-1)*up(t).
These numbers are the half moments of the Rvachëv function. The Rvachëv function is related to the Fabius function, up(x)=F(x+1) for |x|<1 and up(x)=0 for |x|>=1.
The sequence of numerators is not in the OEIS because it appears t coincide with A272755: Numerators of Fabius function F(1/2^n). In fact d(n) = n! 2^binomial(n,2)F(1/2^n). The coincidence depends on the fact that n! 2^binomial(n,2) divides the denominator of F(1/2^n). It is true that 2^binomial(n,2) divides this denominator, but I do not see any reason for n! to divide this denominator.

Examples

			The rationals d(n) are  1/2, 5/18, 1/6, 143/1350, 19/270,  ...
		

Crossrefs

Programs

  • Mathematica
    d[0] = 1;
    d[n_] := d[n] =
      Sum[Binomial[n + 1, k] d[k], {k, 0, n - 1}]/((n + 1)*(2^n - 1));
    Table[Denominator[d[n]], {n, 1, 20}]

Formula

Recurrence d(0)=1; d(n)=Sum_{k=0..n-1}(binomial(n+1,k)d(k))/((n+1)*(2^n-1)) with a(n) are the denominators of d(n).
It may also be defined to be the only sequence d(n) with d(0)=1 and such that the function f(x)=Sum_{n>=0} d(n) x^n/n! satisfies x*f(2x)=(e^x-1)*f(x).