A299760
Primes p with index k >= 3 such that A288189(k) = A295185(k).
Original entry on oeis.org
5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 59, 61, 71, 73, 79, 83, 89, 101, 103, 107, 109, 113, 131, 139, 151, 167, 173, 179, 181, 193, 197, 199, 227, 229, 233, 239, 241, 269, 271, 281, 283, 311, 313, 317, 349, 353, 359, 379, 383, 389, 401, 421, 433, 439, 443, 449, 461, 463, 467, 491, 503, 509, 523, 569, 571, 599, 601, 607
Offset: 1
p=29 is included because 2p-3 and 3p-2 are both composite so A(29) = 8(p-6) = 8(p-6) = 8*23 = 184 = B(29).
p=37 is not included since A(37) = 3(2p-3) = 213 whereas B(37) = X(6)(37-6) = 8*31 = 248, so A(37) < B(37). In both examples g=6.
-
sopfr(k) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
ap288189(p) = forcomposite(c=p, , if (!(sopfr(c) % p), return(c)));
ap295185(p) = forcomposite(c=p, , if (sopfr(c) == p, return(c)));
isok(p) = isprime(p) && (ap288189(p)==ap295185(p)); \\ Michel Marcus, Apr 14 2018
A302720
Primes with index k >= 3 such that A288189(prime(k)) < A295185(prime(k)).
Original entry on oeis.org
37, 53, 67, 97, 127, 137, 149, 157, 163, 191, 211, 223, 251, 257, 263, 277, 293, 307, 331, 337, 347, 367, 373, 397, 409, 419, 431, 457, 479, 487, 499, 521, 541, 547, 557, 563, 577, 587, 593, 613, 631, 641, 653, 673, 691, 701, 709, 719, 727, 751, 757, 769, 787, 797, 809, 821, 839, 853, 877, 907, 919, 929, 937, 953, 967, 977
Offset: 1
k=12, prime(12)=37, A288189(37) = 213 < 248 = A295185(37). 37 is the smallest prime with this property, so a(1)=37.
-
sopfr(k) = my(f=factor(k)); sum(j=1, #f~, f[j, 1]*f[j, 2]);
ap288189(p) = forcomposite(c=p, , if (!(sopfr(c) % p), return(c)));
ap295185(p) = forcomposite(c=p, , if (sopfr(c) == p, return(c)));
isokp(p) = (ap288189(p) < ap295185(p));
lista(nn) = forprime(p=5, nn, if (isokp(p), print1(p, ", "))); \\ Michel Marcus, May 13 2018
A295185
a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3.
Original entry on oeis.org
6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669
Offset: 3
5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
Cf.
A000040,
A056240,
A288814,
A292081,
A289993,
A288313,
A297150,
A298615,
A298252,
A297925,
A298366,
A288189.
-
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
-
a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017
Showing 1-3 of 3 results.
Comments