A288253 Number of heptagons that can be formed with perimeter n.
1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 34, 42, 58, 70, 93, 112, 145, 171, 218, 256, 320, 372, 458, 528, 643, 735, 884, 1006, 1198, 1352, 1597, 1795, 2102, 2350, 2732, 3041, 3513, 3892, 4468, 4934, 5633, 6194, 7037, 7715, 8722, 9531, 10728, 11690
Offset: 7
Links
- Seiichi Manyama, Table of n, a(n) for n = 7..10000
- G. E. Andrews, P. Paule and A. Riese, MacMahon's Partition Analysis IX: k-gon partitions, Bull. Austral Math. Soc., 64 (2001), 321-329.
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018. [This thesis cites this sequence entry, but it's just a typo: the intended sequence entry is A288853.]
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 1, 0, 0, 1, 0, -1, -1, -1, 0, 0, -2, 0, 0, 1, 1, 0, 1, 2, 1, 0, 1, -1, 0, -1, -2, -1, 0, -1, -1, 0, 0, 2, 0, 0, 1, 1, 1, 0, -1, 0, 0, -1, 0, -1, 0, 1).
Crossrefs
Formula
G.f.: x^7/((1-x)*(1-x^2)* ... *(1-x^7)) - x^12/(1-x) * 1/((1-x^2)*(1-x^4)* ... *(1-x^12)).
a(2*n+12) = A026813(2*n+12) - A288341(n), a(2*n+13) = A026813(2*n+13) - A288341(n) for n >= 0. - Seiichi Manyama, Jun 08 2017
Comments