A288290 a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 5.
28449551653853229900, 5131008990500486096250, 447964809766718459342400, 25606868770179512447281320, 1088463806617771584122226336, 36940703720927769833985462240, 1047632171592441142843472246400, 25624962301264473700614835484334, 553279524558089394499396612588296, 10733417717473916970871163704143300, 189705897479950023040270728219928512
Offset: 19
Keywords
Links
- Gheorghe Coserea, The g.f. as a rational function of y=A000108(x)
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Crossrefs
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); a[n_] := Q[n, 10, 5]; Table[a[n], {n, 19, 29}] (* Jean-François Alcover, Oct 17 2018 *)