cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288312 Number of endofunctions on [2n] such that the image size equals n.

Original entry on oeis.org

1, 2, 84, 10800, 2857680, 1285956000, 880599202560, 853262368358400, 1111400775560275200, 1873276460474747328000, 3967400888465895264384000, 10313998054713896966296473600, 32291970618091110826769565696000, 119851615755915509174015455948800000
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2017

Keywords

Examples

			a(1) = 2: (1,1), (2,2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=n, n!,
          `if`(k=0, 0, n*(b(n-1, k-1)+b(n-1, k)*k/(n-k))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..15);
  • Mathematica
    Table[StirlingS2[2*n, n]*(2*n)!/n!, {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2017 *)
  • PARI
    a(n)=stirling(2*n, n, 2)*n!*binomial(2*n, n); \\ Indranil Ghosh, Jul 04 2017
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(stirling2(2*n, n)*fac(n)*binomial(2*n, n))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017

Formula

a(n) = Stirling2(2*n,n) * n! * binomial(2*n,n).
a(n) = A090657(2n,n) = A101817(2n,n) = A219859(2n,n).
a(n) ~ n^(2*n - 1/2) * 2^(4*n) / (sqrt(Pi*(1-c)) * c^n * (2-c)^n * exp(2*n)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Jun 10 2017