cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090657 Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2003

Keywords

Comments

Another version is in A101817. - Philippe Deléham, Feb 16 2013

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,  18,   6;
  0,  4,  84, 144, 24;
  ...
		

Crossrefs

Row sums give: A000312. Columns k=0-2 give: A000007, A001477, A068605. Diagonal, lower diagonal give: A000142, A001804. Cf. A007318, A048993, A019538, A008279.

Programs

  • Maple
    T:= proc(n,k) option remember;
          if k=n then n!
        elif k=0 or k>n then 0
        else n * (T(n-1,k-1) + k/(n-k) * T(n-1,k))
          fi
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);
  • Mathematica
    Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0,10}] // Flatten  (* Geoffrey Critzer, Sep 09 2011 *)

Formula

T(n,k) = C(n,k) * k! * A048993(n,k).
T(n,k) = A008279(n,k) * A048993(n,k).
T(n,k) = C(n,k) * A019538(n, k).
T(n,k) = C(n,k) * Sum_{j=0..k} (-1)^(k-j) * C(k,j) * j^n.
T(n,k) = n * (T(n-1,k-1) + k/(n-k) * T(n-1,k)) with T(n,n) = n! and T(n,0) = 0 for n>0.
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017

Extensions

Revised description from Jan Maciak, Apr 25 2004
Edited by Alois P. Heinz, Jan 17 2011

A101817 Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n} such that |Image(f)|=h; h=1,2,...,n, n=1,2,3,... . Essentially A090657, but without zeros.

Original entry on oeis.org

1, 2, 2, 3, 18, 6, 4, 84, 144, 24, 5, 300, 1500, 1200, 120, 6, 930, 10800, 23400, 10800, 720, 7, 2646, 63210, 294000, 352800, 105840, 5040, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320, 9, 18360, 1524600, 23496480, 105099120
Offset: 1

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Comments

Row sums = n^n. T(n,1) = n, T(n,n) = n!.

Examples

			First rows:
1;
2,   2;
3,  18,   6;
4,  84, 144,  24;
		

References

  • H. Picquet, Note #124, L'Intermédiaire des Mathématiciens, 1 (1894), pp. 125-127. - N. J. A. Sloane, Feb 28 2022

Crossrefs

Programs

  • Mathematica
    Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 1, n}], {n, 1, 8}] // Grid

Formula

T(n, h) = C(n, h)*U(n, h), where U(n, h) is the array in A019538. Thus T(n, h) = C(n, h)*h!*S(n, h), where S(n, h) is a Stirling number of the second kind (given by A048993 with zeros removed).
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017

A219859 Triangular array read by rows: T(n,k) is the number of endofunctions, functions f:{1,2,...,n}->{1,2,...,n}, that have exactly k elements with no preimage; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 84, 4, 0, 120, 1200, 1500, 300, 5, 0, 720, 10800, 23400, 10800, 930, 6, 0, 5040, 105840, 352800, 294000, 63210, 2646, 7, 0, 40320, 1128960, 5362560, 7056000, 2857680, 324576, 7112, 8, 0, 362880, 13063680, 83825280, 160030080, 105099120, 23496480, 1524600, 18360, 9, 0
Offset: 0

Views

Author

Geoffrey Critzer, Dec 01 2012

Keywords

Comments

Equivalently, T(n,k) is the number of endofunctions whose functional digraph has exactly k leaves.
Equivalently, T(n,k) is the number of doubly rooted trees with k leaves. Here, a doubly rooted tree is a labeled tree in which two special vertices have been selected and the order of the selection matters. [Bona page 266]
Row sums are n^n.

Examples

			Triangle T(n,k) begins:
    1;
    1,     0;
    2,     2,     0;
    6,    18,     3,     0;
   24,   144,    84,     4,   0;
  120,  1200,  1500,   300,   5, 0;
  720, 10800, 23400, 10800, 930, 6, 0;
  ...
		

References

  • M. Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007.

Crossrefs

Column k=0-1 give: A000142, A001804.
Row sums give A000312.
T(2n,n) gives A288312.

Programs

  • Mathematica
    Table[Table[n!/k!StirlingS2[n,n-k],{k,0,n}],{n,0,8}]//Grid
  • PARI
    row(n) = vector(n+1, k, k--; n!/k! * stirling(n,n-k,2)); \\ Michel Marcus, Jan 24 2022

Formula

T(n,k) = n!/k! * Stirling2(n,n-k).
T(n,0) = n!.
T(n,k) = A055302(n,k)*(n-k) + A055302(n,k+1)*(k+1). The first term (on rhs of this equation) is the number of such functions in which the preimage of f(n) contains more than one element. The second term is the number of such functions in which the preimage of f(n) contains exactly one element.
T(n,k) = binomial(n,k) Sum_{j=0..n-k}(-1)^j*binomial(n-k,j)*(n-k-j)^n. - Geoffrey Critzer, Aug 20 2013
E.g.f.: 1/(1 - (A(x,y) - y*x + x)) where A(x,y) is the e.g.f. for A055302. - Geoffrey Critzer, Jan 24 2022
From Alois P. Heinz, Jan 24 2022: (Start)
Sum_{k=0..n} k * T(n,k) = A209290(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A344053(n). (End)
Showing 1-3 of 3 results.