A101818
Triangle read by rows: (1/n)*T(n,h), where T(n,h) is the array in A101817.
Original entry on oeis.org
1, 1, 1, 1, 6, 2, 1, 21, 36, 6, 1, 60, 300, 240, 24, 1, 155, 1800, 3900, 1800, 120, 1, 378, 9030, 42000, 50400, 15120, 720, 1, 889, 40572, 357210, 882000, 670320, 141120, 5040, 1, 2040, 169400, 2610720, 11677680, 17781120, 9313920, 1451520, 40320
Offset: 1
First rows:
1
1 1
1 6 2
1 21 36 6
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.
-
Table[Table[StirlingS2[n, k] (n-1)!/(n - k)!, {k, 1, n}], {n, 1,
6}] // Grid (* Geoffrey Critzer, Jan 02 2022 *)
A090657
Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 2;
0, 3, 18, 6;
0, 4, 84, 144, 24;
...
-
T:= proc(n,k) option remember;
if k=n then n!
elif k=0 or k>n then 0
else n * (T(n-1,k-1) + k/(n-k) * T(n-1,k))
fi
end:
seq(seq(T(n,k), k=0..n), n=0..10);
-
Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0,10}] // Flatten (* Geoffrey Critzer, Sep 09 2011 *)
Revised description from Jan Maciak, Apr 25 2004
A101819
Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n-1} such that |Image(f)|=h, h=1,2,...,n-1, n=2,3,...
Original entry on oeis.org
1, 2, 6, 3, 42, 36, 4, 180, 600, 240, 5, 620, 5400, 7800, 1800, 6, 1890, 36120, 12600, 100800, 15120, 7, 5334, 202860, 1428840, 2646000, 1340640, 141120, 8, 14280, 1016400, 13053600, 46710720, 53343360, 18627840, 1451520, 9, 36792, 4702320
Offset: 0
First rows:
1
2 6
3 42 36
4 180 600 240
To see that T(4,2)=42, first count 7 functions from {1,2,3,4}
onto {1,2} with f(1)=1 and 7 with f(1)=2. Count 14 onto {1,3}
and 14 onto {2,3}, for a total of 42.
A101821
Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n-2} such that |Image(f)|=h, h=1,2,...,n-2; n=3,4,....
Original entry on oeis.org
2, 3, 42, 4, 180, 600, 5, 620, 5400, 7800, 6, 1890, 36120, 126000, 100800, 7, 5534, 202860, 1428840, 2646000, 1340640, 8, 14280, 1016400, 13053600, 46710720, 53343360, 18627840, 9, 36792, 4702320, 103133520, 642978000, 1380576960
Offset: 0
First rows:
2
3 42
4 180 600
5 620 5400 7800
A288312
Number of endofunctions on [2n] such that the image size equals n.
Original entry on oeis.org
1, 2, 84, 10800, 2857680, 1285956000, 880599202560, 853262368358400, 1111400775560275200, 1873276460474747328000, 3967400888465895264384000, 10313998054713896966296473600, 32291970618091110826769565696000, 119851615755915509174015455948800000
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=n, n!,
`if`(k=0, 0, n*(b(n-1, k-1)+b(n-1, k)*k/(n-k))))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..15);
-
Table[StirlingS2[2*n, n]*(2*n)!/n!, {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2017 *)
-
a(n)=stirling(2*n, n, 2)*n!*binomial(2*n, n); \\ Indranil Ghosh, Jul 04 2017
-
from mpmath import *
mp.dps=100
def a(n): return int(stirling2(2*n, n)*fac(n)*binomial(2*n, n))
print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017
A219859
Triangular array read by rows: T(n,k) is the number of endofunctions, functions f:{1,2,...,n}->{1,2,...,n}, that have exactly k elements with no preimage; n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 84, 4, 0, 120, 1200, 1500, 300, 5, 0, 720, 10800, 23400, 10800, 930, 6, 0, 5040, 105840, 352800, 294000, 63210, 2646, 7, 0, 40320, 1128960, 5362560, 7056000, 2857680, 324576, 7112, 8, 0, 362880, 13063680, 83825280, 160030080, 105099120, 23496480, 1524600, 18360, 9, 0
Offset: 0
Triangle T(n,k) begins:
1;
1, 0;
2, 2, 0;
6, 18, 3, 0;
24, 144, 84, 4, 0;
120, 1200, 1500, 300, 5, 0;
720, 10800, 23400, 10800, 930, 6, 0;
...
- M. Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007.
-
Table[Table[n!/k!StirlingS2[n,n-k],{k,0,n}],{n,0,8}]//Grid
-
row(n) = vector(n+1, k, k--; n!/k! * stirling(n,n-k,2)); \\ Michel Marcus, Jan 24 2022
A101820
Triangle read by rows: T(n,h)/(n-1), where T is the array in A101819.
Original entry on oeis.org
1, 1, 3, 1, 14, 12, 1, 45, 150, 60, 1, 124, 1080, 1560, 360, 1, 315, 6020, 21000, 16800, 2520, 1, 762, 28980, 204120, 378000, 191520, 20160, 1, 1785, 127050, 1631700, 5838840, 6667920, 2328480, 181440, 1, 4088, 522480, 11459280, 71442000
Offset: 0
First rows:
1
1 3
1 14 12
4 45 150 60
A181415
Irregular triangle a(n,k) = A049009(n,k)/n, read by rows 1<=k<=A000041(n).
Original entry on oeis.org
1, 1, 1, 1, 6, 2, 1, 12, 9, 36, 6, 1, 20, 40, 120, 180, 240, 24, 1, 30, 75, 50, 300, 1200, 300, 1200, 2700, 1800, 120, 1, 42, 126, 210, 630, 3150, 2100, 3150, 4200, 25200, 12600, 12600, 37800, 15120, 720, 1, 56, 196, 392, 245, 1176, 7056, 11760, 8820, 11760, 11760, 88200
Offset: 1
Row three is calculated as follows:
( 3 18 6) divided by (3 3 3) yielding (1 6 2)
1;
1,1;
1,6,2;
1,12,9,36,6;
1,20,40,120,180,240,24;
1,30,75,50,300,1200,300,1200,2700,1800,120;
1,42,126,210,630,3150,2100,3150,4200,25200,12600,12600,37800,15120,720;
Showing 1-8 of 8 results.
Comments