cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A101818 Triangle read by rows: (1/n)*T(n,h), where T(n,h) is the array in A101817.

Original entry on oeis.org

1, 1, 1, 1, 6, 2, 1, 21, 36, 6, 1, 60, 300, 240, 24, 1, 155, 1800, 3900, 1800, 120, 1, 378, 9030, 42000, 50400, 15120, 720, 1, 889, 40572, 357210, 882000, 670320, 141120, 5040, 1, 2040, 169400, 2610720, 11677680, 17781120, 9313920, 1451520, 40320
Offset: 1

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Comments

Column 2 is A066524.
T(n,h) is the number of partial functions f:{1,2,...,n-1}->{1,2,...,n-1} such that |Image(f)| = h-1. Equivalently T(n,h) = |D_h(a)| where D_h(a) is Green's D-class containing a, with a in the semigroup of partial transformations on [n-1] and rank(a) = h-1. - Geoffrey Critzer, Jan 02 2022

Examples

			First rows:
1
1 1
1 6 2
1 21 36 6
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.

Crossrefs

Programs

  • Mathematica
    Table[Table[StirlingS2[n, k] (n-1)!/(n - k)!, {k, 1, n}], {n, 1,
       6}] // Grid (* Geoffrey Critzer, Jan 02 2022 *)

Formula

T(n, h) = (1/n)*C(n, h)*U(n, h), where U(n, h) is the array in A019538.
T(n, h) = Stirling2(n,h)*(n-1)!/(n-h)!. - Geoffrey Critzer, Jan 02 2022

Extensions

Offset changed to 1 by Alois P. Heinz, Jan 03 2022

A090657 Triangle read by rows: T(n,k) = number of functions from [1,2,...,n] to [1,2,...,n] such that the image contains exactly k elements (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 18, 6, 0, 4, 84, 144, 24, 0, 5, 300, 1500, 1200, 120, 0, 6, 930, 10800, 23400, 10800, 720, 0, 7, 2646, 63210, 294000, 352800, 105840, 5040, 0, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2003

Keywords

Comments

Another version is in A101817. - Philippe Deléham, Feb 16 2013

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,   2;
  0,  3,  18,   6;
  0,  4,  84, 144, 24;
  ...
		

Crossrefs

Row sums give: A000312. Columns k=0-2 give: A000007, A001477, A068605. Diagonal, lower diagonal give: A000142, A001804. Cf. A007318, A048993, A019538, A008279.

Programs

  • Maple
    T:= proc(n,k) option remember;
          if k=n then n!
        elif k=0 or k>n then 0
        else n * (T(n-1,k-1) + k/(n-k) * T(n-1,k))
          fi
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);
  • Mathematica
    Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 0, n}], {n, 0,10}] // Flatten  (* Geoffrey Critzer, Sep 09 2011 *)

Formula

T(n,k) = C(n,k) * k! * A048993(n,k).
T(n,k) = A008279(n,k) * A048993(n,k).
T(n,k) = C(n,k) * A019538(n, k).
T(n,k) = C(n,k) * Sum_{j=0..k} (-1)^(k-j) * C(k,j) * j^n.
T(n,k) = n * (T(n-1,k-1) + k/(n-k) * T(n-1,k)) with T(n,n) = n! and T(n,0) = 0 for n>0.
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017

Extensions

Revised description from Jan Maciak, Apr 25 2004
Edited by Alois P. Heinz, Jan 17 2011

A101819 Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n-1} such that |Image(f)|=h, h=1,2,...,n-1, n=2,3,...

Original entry on oeis.org

1, 2, 6, 3, 42, 36, 4, 180, 600, 240, 5, 620, 5400, 7800, 1800, 6, 1890, 36120, 12600, 100800, 15120, 7, 5334, 202860, 1428840, 2646000, 1340640, 141120, 8, 14280, 1016400, 13053600, 46710720, 53343360, 18627840, 1451520, 9, 36792, 4702320
Offset: 0

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Examples

			First rows:
1
2 6
3 42 36
4 180 600 240
To see that T(4,2)=42, first count 7 functions from {1,2,3,4}
onto {1,2} with f(1)=1 and 7 with f(1)=2. Count 14 onto {1,3}
and 14 onto {2,3}, for a total of 42.
		

Crossrefs

Formula

T(n, h) = C(n-1, h)*U(n, h), where U(n, h) is the array in A019538.

A101821 Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n-2} such that |Image(f)|=h, h=1,2,...,n-2; n=3,4,....

Original entry on oeis.org

2, 3, 42, 4, 180, 600, 5, 620, 5400, 7800, 6, 1890, 36120, 126000, 100800, 7, 5534, 202860, 1428840, 2646000, 1340640, 8, 14280, 1016400, 13053600, 46710720, 53343360, 18627840, 9, 36792, 4702320, 103133520, 642978000, 1380576960
Offset: 0

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Examples

			First rows:
2
3 42
4 180 600
5 620 5400 7800
		

Crossrefs

Formula

T(n, h) = C(n-2, h)*U(n, h), where U(n, h) is the array in A019538.

A288312 Number of endofunctions on [2n] such that the image size equals n.

Original entry on oeis.org

1, 2, 84, 10800, 2857680, 1285956000, 880599202560, 853262368358400, 1111400775560275200, 1873276460474747328000, 3967400888465895264384000, 10313998054713896966296473600, 32291970618091110826769565696000, 119851615755915509174015455948800000
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2017

Keywords

Examples

			a(1) = 2: (1,1), (2,2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=n, n!,
          `if`(k=0, 0, n*(b(n-1, k-1)+b(n-1, k)*k/(n-k))))
        end:
    a:= n-> b(2*n, n):
    seq(a(n), n=0..15);
  • Mathematica
    Table[StirlingS2[2*n, n]*(2*n)!/n!, {n, 0, 20}] (* Vaclav Kotesovec, Jun 10 2017 *)
  • PARI
    a(n)=stirling(2*n, n, 2)*n!*binomial(2*n, n); \\ Indranil Ghosh, Jul 04 2017
    
  • Python
    from mpmath import *
    mp.dps=100
    def a(n): return int(stirling2(2*n, n)*fac(n)*binomial(2*n, n))
    print([a(n) for n in range(21)]) # Indranil Ghosh, Jul 04 2017

Formula

a(n) = Stirling2(2*n,n) * n! * binomial(2*n,n).
a(n) = A090657(2n,n) = A101817(2n,n) = A219859(2n,n).
a(n) ~ n^(2*n - 1/2) * 2^(4*n) / (sqrt(Pi*(1-c)) * c^n * (2-c)^n * exp(2*n)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Jun 10 2017

A219859 Triangular array read by rows: T(n,k) is the number of endofunctions, functions f:{1,2,...,n}->{1,2,...,n}, that have exactly k elements with no preimage; n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 84, 4, 0, 120, 1200, 1500, 300, 5, 0, 720, 10800, 23400, 10800, 930, 6, 0, 5040, 105840, 352800, 294000, 63210, 2646, 7, 0, 40320, 1128960, 5362560, 7056000, 2857680, 324576, 7112, 8, 0, 362880, 13063680, 83825280, 160030080, 105099120, 23496480, 1524600, 18360, 9, 0
Offset: 0

Views

Author

Geoffrey Critzer, Dec 01 2012

Keywords

Comments

Equivalently, T(n,k) is the number of endofunctions whose functional digraph has exactly k leaves.
Equivalently, T(n,k) is the number of doubly rooted trees with k leaves. Here, a doubly rooted tree is a labeled tree in which two special vertices have been selected and the order of the selection matters. [Bona page 266]
Row sums are n^n.

Examples

			Triangle T(n,k) begins:
    1;
    1,     0;
    2,     2,     0;
    6,    18,     3,     0;
   24,   144,    84,     4,   0;
  120,  1200,  1500,   300,   5, 0;
  720, 10800, 23400, 10800, 930, 6, 0;
  ...
		

References

  • M. Bona, Introduction to Enumerative Combinatorics, McGraw Hill, 2007.

Crossrefs

Column k=0-1 give: A000142, A001804.
Row sums give A000312.
T(2n,n) gives A288312.

Programs

  • Mathematica
    Table[Table[n!/k!StirlingS2[n,n-k],{k,0,n}],{n,0,8}]//Grid
  • PARI
    row(n) = vector(n+1, k, k--; n!/k! * stirling(n,n-k,2)); \\ Michel Marcus, Jan 24 2022

Formula

T(n,k) = n!/k! * Stirling2(n,n-k).
T(n,0) = n!.
T(n,k) = A055302(n,k)*(n-k) + A055302(n,k+1)*(k+1). The first term (on rhs of this equation) is the number of such functions in which the preimage of f(n) contains more than one element. The second term is the number of such functions in which the preimage of f(n) contains exactly one element.
T(n,k) = binomial(n,k) Sum_{j=0..n-k}(-1)^j*binomial(n-k,j)*(n-k-j)^n. - Geoffrey Critzer, Aug 20 2013
E.g.f.: 1/(1 - (A(x,y) - y*x + x)) where A(x,y) is the e.g.f. for A055302. - Geoffrey Critzer, Jan 24 2022
From Alois P. Heinz, Jan 24 2022: (Start)
Sum_{k=0..n} k * T(n,k) = A209290(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A344053(n). (End)

A101820 Triangle read by rows: T(n,h)/(n-1), where T is the array in A101819.

Original entry on oeis.org

1, 1, 3, 1, 14, 12, 1, 45, 150, 60, 1, 124, 1080, 1560, 360, 1, 315, 6020, 21000, 16800, 2520, 1, 762, 28980, 204120, 378000, 191520, 20160, 1, 1785, 127050, 1631700, 5838840, 6667920, 2328480, 181440, 1, 4088, 522480, 11459280, 71442000
Offset: 0

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Examples

			First rows:
1
1 3
1 14 12
4 45 150 60
		

Crossrefs

Formula

T(n, h) = C(n-1, h)*U(n, h)/(n-1), where U(n, h) is the array in A019538.

A181415 Irregular triangle a(n,k) = A049009(n,k)/n, read by rows 1<=k<=A000041(n).

Original entry on oeis.org

1, 1, 1, 1, 6, 2, 1, 12, 9, 36, 6, 1, 20, 40, 120, 180, 240, 24, 1, 30, 75, 50, 300, 1200, 300, 1200, 2700, 1800, 120, 1, 42, 126, 210, 630, 3150, 2100, 3150, 4200, 25200, 12600, 12600, 37800, 15120, 720, 1, 56, 196, 392, 245, 1176, 7056, 11760, 8820, 11760, 11760, 88200
Offset: 1

Views

Author

Alford Arnold, Oct 20 2010

Keywords

Examples

			Row three is calculated as follows:
( 3 18 6) divided by (3 3 3) yielding (1 6 2)
1;
1,1;
1,6,2;
1,12,9,36,6;
1,20,40,120,180,240,24;
1,30,75,50,300,1200,300,1200,2700,1800,120;
1,42,126,210,630,3150,2100,3150,4200,25200,12600,12600,37800,15120,720;
		

Crossrefs

Cf. A000169 (row sums), A000081 (unlabeled rooted trees) A179438 (a similar refinement), A054589, A135278, A019538, A101817, A101818

Formula

Sum_{k=1.. A000041(n)} a(n,k) = A000169(n). (Row sums)
a(n,k) = A098546(n,k) *A049019(n,k) /n. - Compare with the formula in A101818.

Extensions

Edited by R. J. Mathar, May 17 2016
Showing 1-8 of 8 results.