cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A101820 Triangle read by rows: T(n,h)/(n-1), where T is the array in A101819.

Original entry on oeis.org

1, 1, 3, 1, 14, 12, 1, 45, 150, 60, 1, 124, 1080, 1560, 360, 1, 315, 6020, 21000, 16800, 2520, 1, 762, 28980, 204120, 378000, 191520, 20160, 1, 1785, 127050, 1631700, 5838840, 6667920, 2328480, 181440, 1, 4088, 522480, 11459280, 71442000
Offset: 0

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Examples

			First rows:
1
1 3
1 14 12
4 45 150 60
		

Crossrefs

Formula

T(n, h) = C(n-1, h)*U(n, h)/(n-1), where U(n, h) is the array in A019538.

A101817 Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n} such that |Image(f)|=h; h=1,2,...,n, n=1,2,3,... . Essentially A090657, but without zeros.

Original entry on oeis.org

1, 2, 2, 3, 18, 6, 4, 84, 144, 24, 5, 300, 1500, 1200, 120, 6, 930, 10800, 23400, 10800, 720, 7, 2646, 63210, 294000, 352800, 105840, 5040, 8, 7112, 324576, 2857680, 7056000, 5362560, 1128960, 40320, 9, 18360, 1524600, 23496480, 105099120
Offset: 1

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Comments

Row sums = n^n. T(n,1) = n, T(n,n) = n!.

Examples

			First rows:
1;
2,   2;
3,  18,   6;
4,  84, 144,  24;
		

References

  • H. Picquet, Note #124, L'Intermédiaire des Mathématiciens, 1 (1894), pp. 125-127. - N. J. A. Sloane, Feb 28 2022

Crossrefs

Programs

  • Mathematica
    Table[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 1, n}], {n, 1, 8}] // Grid

Formula

T(n, h) = C(n, h)*U(n, h), where U(n, h) is the array in A019538. Thus T(n, h) = C(n, h)*h!*S(n, h), where S(n, h) is a Stirling number of the second kind (given by A048993 with zeros removed).
T(2n,n) = A288312(n). - Alois P. Heinz, Jun 07 2017

A101821 Triangle read by rows: T(n,h) = number of functions f:{1,2,...,n}->{1,2,...,n-2} such that |Image(f)|=h, h=1,2,...,n-2; n=3,4,....

Original entry on oeis.org

2, 3, 42, 4, 180, 600, 5, 620, 5400, 7800, 6, 1890, 36120, 126000, 100800, 7, 5534, 202860, 1428840, 2646000, 1340640, 8, 14280, 1016400, 13053600, 46710720, 53343360, 18627840, 9, 36792, 4702320, 103133520, 642978000, 1380576960
Offset: 0

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Examples

			First rows:
2
3 42
4 180 600
5 620 5400 7800
		

Crossrefs

Formula

T(n, h) = C(n-2, h)*U(n, h), where U(n, h) is the array in A019538.

A101818 Triangle read by rows: (1/n)*T(n,h), where T(n,h) is the array in A101817.

Original entry on oeis.org

1, 1, 1, 1, 6, 2, 1, 21, 36, 6, 1, 60, 300, 240, 24, 1, 155, 1800, 3900, 1800, 120, 1, 378, 9030, 42000, 50400, 15120, 720, 1, 889, 40572, 357210, 882000, 670320, 141120, 5040, 1, 2040, 169400, 2610720, 11677680, 17781120, 9313920, 1451520, 40320
Offset: 1

Views

Author

Clark Kimberling, Dec 17 2004

Keywords

Comments

Column 2 is A066524.
T(n,h) is the number of partial functions f:{1,2,...,n-1}->{1,2,...,n-1} such that |Image(f)| = h-1. Equivalently T(n,h) = |D_h(a)| where D_h(a) is Green's D-class containing a, with a in the semigroup of partial transformations on [n-1] and rank(a) = h-1. - Geoffrey Critzer, Jan 02 2022

Examples

			First rows:
1
1 1
1 6 2
1 21 36 6
		

References

  • O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, page 61.

Crossrefs

Programs

  • Mathematica
    Table[Table[StirlingS2[n, k] (n-1)!/(n - k)!, {k, 1, n}], {n, 1,
       6}] // Grid (* Geoffrey Critzer, Jan 02 2022 *)

Formula

T(n, h) = (1/n)*C(n, h)*U(n, h), where U(n, h) is the array in A019538.
T(n, h) = Stirling2(n,h)*(n-1)!/(n-h)!. - Geoffrey Critzer, Jan 02 2022

Extensions

Offset changed to 1 by Alois P. Heinz, Jan 03 2022
Showing 1-4 of 4 results.