cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288319 Number of Dyck paths of semilength n such that each positive level has exactly three peaks.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 4, 20, 20, 0, 16, 200, 1120, 3540, 6864, 9400, 18240, 82000, 364256, 1255040, 3448400, 8094400, 18653984, 50789120, 166596240, 565558400, 1791310496, 5202559520, 14279014880, 39040502400, 111437733184, 335085082880, 1032287357600
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2017

Keywords

Examples

			. a(7) = 4:
.           /\/\/\        /\/\/\        /\/\/\        /\/\/\
.    /\/\/\/      \  /\/\/      \/\  /\/      \/\/\  /      \/\/\/\ .
		

Crossrefs

Column k=3 of A288318.
Cf. A000108.

Programs

  • Maple
    b:= proc(n, k, j) option remember;
         `if`(n=j, 1, add(b(n-j, k, i)*(binomial(i, k)
          *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 3$2)):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i,1, Min[j + k, n - j]}]];
    a[n_] := If[n == 0, 1, b[n, 3, 3]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 02 2018, from Maple *)