cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A288492 Indices of terms of A288349 that are powers of 2.

Original entry on oeis.org

1, 2, 3, 18, 95, 440, 1897, 7882, 32139, 129804, 521741, 2092046, 8378383, 33533968, 134176785, 536789010, 2147319827, 8589606932, 34359083029, 137437642774, 549753192471, 2199018012696, 8796082536473, 35184351117338, 140737446412315, 562949869535260
Offset: 1

Views

Author

Zhining Yang, Jun 10 2017

Keywords

Comments

The sequence is derived from Chinese 2017 college entrance examination mathematics questions.

Examples

			a(4) = 18 means the 18th element of the sum of the concatenate subsequences [2^0, 2^1, ..., 2^k] = 1+1+2+1+2+4+1+2+4+8+1+2+4+8+16+1+2+4 = 64, and 64 is power of 2.
		

Crossrefs

Programs

  • Mathematica
    Position[Accumulate@ Flatten@ Array[2^Range[0, #] &, 2000, 0], k_ /; IntegerQ@ Log2@ k][[All, 1]] (* per Name, or *)
    Table[2 - 5*2^(n - 2) + 2^(2 n - 3) + n + Boole[n == 2], {n, 26}] (* or *)
    LinearRecurrence[{8, -21, 22, -8}, {1, 2, 3, 18, 95, 440}, 26] (* or *)
    Rest@ CoefficientList[Series[x (1 - 6 x + 8 x^2 + 14 x^3 - 22 x^4 + 8 x^5)/((1 - x)^2*(1 - 2 x) (1 - 4 x)), {x, 0, 26}], x] (* Michael De Vlieger, Jun 19 2017 *)
  • PARI
    for(k=0,100,p=(2^k-3)*(2^k-2)/2+k; print1(p, ", "))
    
  • PARI
    ispower2(n) = (n==1) || (n==2) || (ispower(n,,&two) && (two==2));
    lista(nn) = select(x->ispower2(x), vector(nn, n, t=floor(sqrt(2*n)+1/2); 2^t+2^(n-t*(t-1)/2)-t-2), 1); \\ Michel Marcus, Jun 20 2017
    
  • PARI
    Vec(x*(1 - 6*x + 8*x^2 + 14*x^3 - 22*x^4 + 8*x^5) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jun 23 2017

Formula

From Colin Barker, Jun 23 2017: (Start)
G.f.: x*(1 - 6*x + 8*x^2 + 14*x^3 - 22*x^4 + 8*x^5) / ((1 - x)^2*(1 - 2*x)*(1 - 4*x)).
a(n) = 2 - 5*2^(n-2) + 2^(2*n-3) + n for n>2.
a(n) = 8*a(n-1) - 21*a(n-2) + 22*a(n-3) - 8*a(n-4) for n>6.
(End)
Showing 1-1 of 1 results.