A288387 Number T(n,k) of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 8, 5, 0, 0, 1, 25, 13, 3, 0, 0, 1, 83, 35, 13, 0, 0, 0, 1, 282, 112, 30, 4, 0, 0, 0, 1, 971, 368, 61, 29, 0, 0, 0, 0, 1, 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1, 11940, 3992, 619, 188, 56, 0, 0, 0, 0, 0, 1, 42504, 13449, 2241, 345, 240, 6, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
. T(4,1) = 5: . /\ /\ /\/\ /\ /\/\ . /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ . . Triangle T(n,k) begins: : 1; : 0, 1; : 1, 0, 1; : 2, 2, 0, 1; : 8, 5, 0, 0, 1; : 25, 13, 3, 0, 0, 1; : 83, 35, 13, 0, 0, 0, 1; : 282, 112, 30, 4, 0, 0, 0, 1; : 971, 368, 61, 29, 0, 0, 0, 0, 1; : 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(add(binomial(i, m)*binomial(j-1, i-1-m), m=max(k, i-j)..i-1)*b(n-j, k, i), i=1..n-j)) end: A:= proc(n, k) option remember; `if`(n=0, 1, add(b(n, k, j), j=k..n)) end: T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)): seq(seq(T(n, k), k=0..n), n=0..14);
-
Mathematica
b[n_, k_, j_] := b[n, k, j] = If[j==n, 1, Sum[Sum[Binomial[i, m]*Binomial[ j-1, i-1-m], {m, Max[k, i - j], i - 1}]*b[n - j, k, i], {i, 1, n - j}]]; A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n, k, j], {j, k, n}]]; T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
Comments