A008434 Theta series of {D_6}^{+} lattice.
1, 0, 0, 32, 60, 0, 0, 192, 252, 0, 0, 480, 544, 0, 0, 832, 1020, 0, 0, 1440, 1560, 0, 0, 2112, 2080, 0, 0, 2624, 3264, 0, 0, 3840, 4092, 0, 0, 4992, 4380, 0, 0, 5440, 6552, 0, 0, 7392, 8160, 0, 0, 8832, 8224
Offset: 0
Examples
G.f. = 1 + 32*q^3 + 60*q^4 + 192*q^7 + 252*q^8 + 480*q^11 + 544*q^12 + ... - _Michael Somos_, Sep 09 2018
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Robert Coquereaux, Theta functions for lattices of SU(3) hyper-roots, arXiv:1708.00560 [math.QA], 2017.
- M. Deza and V. Grishukhin, Delaunay Polytopes of Cut Lattices, Linear Algebra and Its Applications, 226- 228:667-685 (1995).
- A. Ocneanu, The Classification of subgroups of quantum SU(N), in "Quantum symmetries in theoretical physics and mathematics", Bariloche 2000, Eds. Coquereaux R., Garcia A. and Trinchero R., AMS Contemporary Mathematics, 294, pp. 133-160, (2000). End of Sec 2.5.
- W. Plesken and M. Pohst, Constructing integral lattices with prescribed minimum, Mathematics of Computation, Vol 45, No 171, pp. 209-221, and supplement S5-S16 (1985).
Programs
-
Magma
order:=50; // Example H := DirichletGroup(16,CyclotomicField(EulerPhi(16))); chars := Elements(H); eps := chars[2]; M := ModularForms([eps],3); Eltseq(PowerSeries(M![1,0,0,32,60,0,0],order)); // Robert Coquereaux, Aug 05 2017
-
Magma
A := Basis( ModularForms( Gamma1(16), 3), 50); A[1] + 32*A[4] + 60*A[5] + 192*A[8] + 252*A[9] + 480*A[12] + 544*A[13] + 832*A[16] + 1020*A[17] + 1440*A[20] + 1560*A[21]; /* Michael Somos, Sep 09 2018 */
-
Mathematica
order = 50; S = (1/2) Series[ EllipticTheta[2, 0, q^2]^6 + EllipticTheta[3, 0, q^2]^6 + EllipticTheta[4, 0, q^2]^6, {q, 0, order}]; CoefficientList[Simplify[Normal[S], Assumptions -> q > 0], q] (* Robert Coquereaux, Aug 05 2017 *) a[ n_] := With [{e1 = QPochhammer[ q^2]^12, e2 = QPochhammer[ q^4]^6, e3 = QPochhammer[ q^8]^12}, SeriesCoefficient[ (e2^6 + e1 e3 (e1 + 64 q^3 e3)) / (2 e1 e2 e3), {q, 0, n}]]; (* Michael Somos, Sep 09 2018 *)
-
PARI
{a(n) = my(A, e1, e2, e3); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2)^12; e2 = eta(x^4 + A)^6; e3 = eta(x^8 + A)^12; polcoeff( (e2^6 + e1*e3*(e1 + 64 * x^3 * e3)) / (2 * e1 * e2 * e3), n))}; /* Michael Somos, Sep 09 2018 */
Formula
Expansion of (theta_2(q)^6 + theta_3(q)^6 + theta_4(q)^6)/2. - Seiichi Manyama, Oct 21 2018
Comments