cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 14, 0, 1, 10, 40, 80, 76, 24, 0, 1, 12, 60, 160, 234, 168, 40, 0, 1, 14, 84, 280, 552, 624, 352, 64, 0, 1, 16, 112, 448, 1110, 1712, 1552, 704, 100, 0, 1, 18, 144, 672, 2004, 3912, 4896, 3648, 1356, 154, 0, 1, 20, 180, 960, 3346, 7896, 12600, 13120, 8184, 2532, 232, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 10 2017

Keywords

Examples

			Square array begins:
1,   1,    1,    1,     1,     1,  ...
0,   2,    4,    6,     8,    10,  ...
0,   4,   12,   24,    40,    60,  ...
0,   8,   32,   80,   160,   280,  ...
0,  14,   76,  234,   552,  1110,  ...
0,  24,  168,  624,  1712,  3913,  ...
		

Crossrefs

Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values).
Rows n=0-2 give: A000012, A005843, A046092.
Main diagonal gives A270919.
Antidiagonal sums give A299108.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A288515Column(k, len) = JacobiTheta4(len, -k)
    for k in 0:8 A288515Column(k, 8) |> println end # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.
G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A001934.