cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288641 Define the sequence {b_n(k)} as the solutions of the recursion (k+1) * b_n(k+1) = b_n(k) * (b_n(k)^(n-1) + k) with b_n(0) = 1. a(n) is the least prime p where p * b_n(p) is not 0 mod p.

Original entry on oeis.org

43, 89, 97, 251, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 179, 73, 19, 431, 193, 101, 53, 811, 47, 1427, 19, 251, 29, 311, 137, 71, 23, 499, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107
Offset: 2

Views

Author

Seiichi Manyama, Jun 13 2017

Keywords

Comments

If A108394(n) is a prime, a(n) = A108394(n).

Examples

			(k+1) * b_2(k+1) = b_2(k) * (b_2(k) + k) with b_2(0) = 1.
b_2(1) == 2, b_2(2) == 3, b_2(3) == 5, ... , b_2(42) == 33 mod 43.
So 43 * b_2(43) == b_2(42) * (b_2(42) + 42) == 24 (> 0) mod 43.
		

Crossrefs

Cf. A003504 ({b_2(n+1)}), A005166 ({b_3(n)}), A005167 ({b_4(n)}), A108394, A288676.