cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288687 Number of n-digit biquanimous strings using digits {0,1,2,3}.

Original entry on oeis.org

1, 1, 4, 19, 92, 421, 1830, 7687, 31624, 128521, 518666, 2084875, 8361996, 33497101, 134094862, 536608783, 2146926608, 8588754961, 34357248018, 137433710611, 549744803860, 2199000186901, 8796044787734, 35184271425559, 140737278640152, 562949517213721
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2017

Keywords

Comments

A biquanimous string is a string whose digits can be split into two groups with equal sums.

Crossrefs

Column k=3 of A288638.

Programs

  • Mathematica
    LinearRecurrence[{10,-37,64,-52,16},{1,1,4,19,92,421},30] (* Harvey P. Dale, Jul 29 2017 *)
  • PARI
    Vec((1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Dec 16 2017

Formula

G.f.: (1 - 9*x + 31*x^2 - 48*x^3 + 38*x^4 - 16*x^5) / ((1 - x)^2*(1 - 2*x)^2*(1 - 4*x)).
a(n) = 1 + A064671(n) for n > 0.
From Colin Barker, Dec 16 2017: (Start)
a(n) = (2^(2*n-1) + n - 2^(n-1)*(1+n)).
a(n) = 10*a(n-1) - 37*a(n-2) + 64*a(n-3) - 52*a(n-4) + 16*a(n-5) for n>5.
(End)