cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288785 Number of blocks of size >= three in all set partitions of n.

Original entry on oeis.org

1, 5, 26, 137, 750, 4307, 25996, 164825, 1096217, 7633650, 55549664, 421599778, 3331027887, 27349472297, 232967157736, 2055635993935, 18762063976810, 176896220650029, 1720762736285790, 17249873608817569, 178010337967774511, 1889129778601708612
Offset: 3

Views

Author

Alois P. Heinz, Jun 15 2017

Keywords

Examples

			a(4) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
a(5) = 26: 12345, 1234|5, 1235|4, 123|45, 123|4|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 125|3|4, 1345|2, 134|25, 134|2|5, 135|24, 13|245, 135|2|4, 145|23, 14|235, 15|234, 1|2345, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.
a(6) = 137: 123456, 12345|6, 12346|5, ..., 123|456, 124|356, 125|346, 126|345, 134|256, 135|246, 136|245, 145|236, 146|235, 156|234, ..., 1|256|3|4, 1|2|356|4, 1|2|3|456.
		

Crossrefs

Column k=3 of A283424.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    g:= proc(n, k) option remember; `if`(n g(n, 3):
    seq(a(n), n=3..30);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0,
         `if`(j>2, p[1], 0)])(b(n-j)*binomial(n-1, j-1)), j=1..n))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=3..30);  # Alois P. Heinz, Jan 06 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1], {j, 1, n}]];
    g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k+1] + Binomial[n, k]*b[n - k]];
    a[n_] := g[n, 3];
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 28 2018, from Maple *)

Formula

a(n) = Bell(n+1) - Sum_{j=0..2} binomial(n,j) * Bell(n-j).
a(n) = Sum_{j=0..n-3} binomial(n,j) * Bell(j).
a(n) = Sum_{k=1..n} k * A355144(n,k). - Alois P. Heinz, Jun 20 2022
E.g.f.: (exp(x) - 1 - x - x^2/2) * exp(exp(x) - 1). - Ilya Gutkovskiy, Jun 24 2022