A288838 a(n) = (1/4!)*3^(n+2)*(n+7)*(n+2)*(n+1)*(n).
54, 729, 6075, 40095, 229635, 1194102, 5786802, 26572050, 116917020, 496897335, 2051893701, 8269753401, 32643763425, 126557359740, 482984209620, 1817776934388, 6757388169138, 24843338857125, 90429753439935, 326206114635555, 1167092987918319, 4144371018322194
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (15,-90,270,-405,243).
Programs
-
Mathematica
Table[1/4! 3^(n+2) (n+7)(n+2)(n+1)n,{n,30}] (* or *) LinearRecurrence[{15,-90,270,-405,243},{54,729,6075,40095,229635},30] (* Harvey P. Dale, May 15 2022 *)
-
PARI
a(n)=3^n*3*n*(n+1)*(n+2)*(n+7)/8 \\ Charles R Greathouse IV, Jun 19 2017
Formula
O.g.f.: z*3^3*(2-3*z)/(1-3*z)^5.
a(n) = A287768(n+7,9).