A288842 Triangle (sans apex) of coefficients of terms of the form (eM_1)^j*(eM_2)^k re construction of triangle A287768.
1, 2, 3, 9, 6, 9, 36, 45, 18, 27, 135, 243, 189, 54, 81, 486, 1134, 1296, 729, 162, 243, 1701, 4860, 7290, 6075, 2673, 486, 729, 5832, 19683, 36450, 40095, 26244, 9477, 1458, 2187, 19683, 76545, 168399, 229635, 199017, 107163, 32805, 4374, 6561, 65610, 288684, 734832, 1194102, 1285956, 918540, 419904, 111537, 13122
Offset: 1
Examples
Triangle begins: 1, 2; 3, 9, 6; 9, 36, 45, 18;
Links
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, Table GW.n=3, p.22, arXiv:1706.08381 [math.GM], 2017.
Programs
-
Mathematica
T[1, 1] = 1; T[1, 2] = 2; T[n_, k_] /; 1 <= k <= n+1 := T[n, k] = 3 T[n-1, k-1] + 3 T[n-1, k]; T[, ] = 0; Table[T[n, k], {n, 1, 9}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Nov 16 2018 *)
Formula
T(n+1,k+1) = 3*T(n,k) + 3*T(n,k+1).