A288874 Row reversed version of triangle A201637 (second-order Eulerian triangle).
1, 0, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500, 67260, 1004, 1, 0, 3628800, 44339040, 162186912, 238904904, 155357384, 44765000, 5326160, 218848, 2026, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 0 1 2: 0 2 1 3: 0 6 8 1 4: 0 24 58 22 1 5: 0 120 444 328 52 1 6: 0 720 3708 4400 1452 114 1 7: 0 5040 33984 58140 32120 5610 240 1 8: 0 40320 341136 785304 644020 195800 19950 494 1 9: 0 362880 3733920 11026296 12440064 5765500 1062500 67260 1004 1 ...
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- Andrew Elvey Price, Alan D. Sokal, Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials, arXiv:2001.01468 [math.CO], 2020.
- Wikipedia, Eulerian numbers of the second kind
Crossrefs
Programs
-
Maple
T:= (n, k)-> combinat[eulerian2](n, n-k): seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jul 26 2017 # Using the e.g.f: alias(W = LambertW): len := 10: egf := (t - 1)*(1/(W(-exp(((t - 1)^2*x - 1)/t)/t) + 1) - 1): ser := simplify(subs(W(-exp(-1/t)/t) = (-1/t), series(egf, x, len+1))): seq(seq(n!*coeff(coeff(ser, x, n), t, k), k = 0..n), n = 0..len); # Peter Luschny, Mar 13 2025
-
Mathematica
Table[Boole[n == 0] + Sum[(-1)^(n + k) * Binomial[2 n + 1, k] StirlingS1[2 n - m - k, n - m - k], {k, 0, n - m - 1}], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* Michael De Vlieger, Jul 21 2017, after Jean-François Alcover at A201637 *)
Formula
T(n, m) = A201637(n, n-m), n >= m >= 0.
Recurrence: T(0, 0) = 1, T(n, -1) = 0, T(n, m) = 0 if n < m, (n-m+1)*T(n-1, m-1) + (n-1+m)*T(n-1, m), n >= 1, m = 0..n; from the A008517 recurrence.
T(0, 0) = 1, T(n, m) = Sum_{p = 0..m-1} (-1)^(n-p)*binomial(2*n+1, p)*A132393(n+m-p, m-p), n >= 1, m = 0..n; from a A008517 program.
T(n, k) = n! * [t^k][x^n] (t - 1)*(1/(W(-exp(((t - 1)^2*x - 1)/t)/t) + 1) - 1) where after expansion W(-exp(-1/t)/t) is substituted by (-1/t). [Inspired by a formula of Shamil Shakirov in A008517.] - Peter Luschny, Mar 13 2025
Comments