cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288920 Number of 6-cycles in the n X n king graph.

Original entry on oeis.org

0, 0, 82, 430, 1030, 1882, 2986, 4342, 5950, 7810, 9922, 12286, 14902, 17770, 20890, 24262, 27886, 31762, 35890, 40270, 44902, 49786, 54922, 60310, 65950, 71842, 77986, 84382, 91030, 97930, 105082, 112486, 120142, 128050, 136210, 144622, 153286, 162202
Offset: 1

Views

Author

Eric W. Weisstein, Jun 19 2017

Keywords

Crossrefs

Cf. A016742 (number of 3-cycles).
Cf. A288918 (number of 4-cycles).
Cf. A288919 (number of 5-cycles).

Programs

  • Mathematica
    Table[If[n < 3, 0, 2 (275 - 267 n + 63 n^2)], {n, 20}]
    CoefficientList[Series[(2 x^2 (-41 - 92 x + 7 x^2))/(-1 + x)^3, {x, 0, 20}], x]
    Join[{0, 0}, LinearRecurrence[{3, -3, 1}, {142, -14, 82}, {3, 20}]]
  • PARI
    concat(vector(2), Vec(2*x^3*(41 + 92*x - 7*x^2) / (1 - x)^3 + O(x^50))) \\ Colin Barker, Jun 19 2017
    
  • PARI
    a(n)=if(n>2, 126*n^2-534*n+550, 0) \\ Charles R Greathouse IV, Jun 19 2017

Formula

From Colin Barker, Jun 19 2017: (Start)
G.f.: 2*x^3*(41 + 92*x - 7*x^2) / (1 - x)^3.
a(n) = 550 - 534*n + 126*n^2 for n > 2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. (End)
E.g.f.: 2*exp(x)*(275 - 204*x + 63*x^2) - 550 - 142*x + 7*x^2. - Stefano Spezia, Aug 14 2022

Extensions

More terms from Colin Barker, Jun 19 2017