A288920 Number of 6-cycles in the n X n king graph.
0, 0, 82, 430, 1030, 1882, 2986, 4342, 5950, 7810, 9922, 12286, 14902, 17770, 20890, 24262, 27886, 31762, 35890, 40270, 44902, 49786, 54922, 60310, 65950, 71842, 77986, 84382, 91030, 97930, 105082, 112486, 120142, 128050, 136210, 144622, 153286, 162202
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, King Graph
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Table[If[n < 3, 0, 2 (275 - 267 n + 63 n^2)], {n, 20}] CoefficientList[Series[(2 x^2 (-41 - 92 x + 7 x^2))/(-1 + x)^3, {x, 0, 20}], x] Join[{0, 0}, LinearRecurrence[{3, -3, 1}, {142, -14, 82}, {3, 20}]]
-
PARI
concat(vector(2), Vec(2*x^3*(41 + 92*x - 7*x^2) / (1 - x)^3 + O(x^50))) \\ Colin Barker, Jun 19 2017
-
PARI
a(n)=if(n>2, 126*n^2-534*n+550, 0) \\ Charles R Greathouse IV, Jun 19 2017
Formula
From Colin Barker, Jun 19 2017: (Start)
G.f.: 2*x^3*(41 + 92*x - 7*x^2) / (1 - x)^3.
a(n) = 550 - 534*n + 126*n^2 for n > 2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. (End)
E.g.f.: 2*exp(x)*(275 - 204*x + 63*x^2) - 550 - 142*x + 7*x^2. - Stefano Spezia, Aug 14 2022
Extensions
More terms from Colin Barker, Jun 19 2017