A288950 Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.
1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0
Keywords
Examples
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left. The general structure is L-o-o-o-o-o-o-o-o-o | | | | o o-o-o o-o o. For n=0 the a(0)=1 solution is L. For n=1 we have a(1)=0 because we need nodes on level 0 and level 1. For n=2 the a(2)=1 solution is L-o | o and the pointers of the node on level 1 both point to the leaf. For n=3 the a(3)=2 solutions have the structure L-o | o-o where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
Links
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
Crossrefs
Cf. A001147 (relaxed compacted binary trees of right height at most one).
Cf. A082161 (relaxed compacted binary trees of unbounded right height).
Cf. A000032, A000246, A001879, A051577, A177145, A213527, A288950, A288952, A288953, A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A000166, A000255, A000262, A052852, A123023, A130905, A176408, A201203 (variants of relaxed compacted binary trees of right height at most one, see the Wallner link).
Cf. A001879.
Programs
-
Mathematica
terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)
Formula
E.g.f.: z + (1-z)/3 * (2-z + (1-2*z)^(-1/2)).
From Seiichi Manyama, Apr 26 2025: (Start)
a(n) = (n-1)*(2*n-3)/(n-2) * a(n-1) for n > 3.
a(n) = A001879(n-2)/3 for n > 2. (End)
Comments