A288961 Number of 3-cycles in the n X n rook graph.
0, 0, 6, 32, 100, 240, 490, 896, 1512, 2400, 3630, 5280, 7436, 10192, 13650, 17920, 23120, 29376, 36822, 45600, 55860, 67760, 81466, 97152, 115000, 135200, 157950, 183456, 211932, 243600, 278690, 317440, 360096, 406912, 458150, 514080, 574980, 641136, 712842, 790400
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Rook Graph
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[n^2 (n - 1) (n - 2)/3, {n, 20}] Table[2 n Binomial[n, 3], {n, 20}] LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 6, 32, 100}, 20] CoefficientList[Series[-((2 x^2 (3 + x))/(-1 + x)^5), {x, 0, 20}], x]
-
PARI
a(n) = {2*n*binomial(n,3)} \\ Andrew Howroyd, Apr 26 2020
Formula
a(n) = 2*n*binomial(n,3).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5).
G.f.: (-2*x^3*(3+x))/(-1+x)^5.
Extensions
Terms a(31) and beyond from Andrew Howroyd, Apr 26 2020