A288962 Number of 4-cycles in the n X n rook graph.
0, 1, 9, 60, 250, 765, 1911, 4144, 8100, 14625, 24805, 39996, 61854, 92365, 133875, 189120, 261256, 353889, 471105, 617500, 798210, 1018941, 1285999, 1606320, 1987500, 2437825, 2966301, 3582684, 4297510, 5122125, 6068715, 7150336, 8380944, 9775425, 11349625, 13120380, 15105546, 17324029, 19795815, 22542000
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Graph Cycle
- Eric Weisstein's World of Mathematics, Rook Graph
- Index entries for linear recurrences with constant coefficients, signature (6, -15, 20, -15, 6, -1).
Programs
-
Magma
[n^2*(n-1)*(n^2-4*n+5)/4 : n in [1..50]]; // Wesley Ivan Hurt, Apr 23 2021
-
Mathematica
Table[n^2 (n - 1) (n^2 - 4 n + 5)/4, {n, 20}] Table[n Binomial[n, 2] (n^2 - 4 n + 5)/2, {n, 20}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 9, 60, 250, 765}, 20] CoefficientList[Series[(x (1 + 3 x + 21 x^2 + 5 x^3))/(-1 + x)^6, {x, 0, 20}], x]
Formula
a(n) = n*binomial(n,2)*(n^2-4*n+5)/2.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6).
G.f.: (x^2*(1+3*x+21*x^2+5*x^3))/(-1+x)^6.