cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288962 Number of 4-cycles in the n X n rook graph.

Original entry on oeis.org

0, 1, 9, 60, 250, 765, 1911, 4144, 8100, 14625, 24805, 39996, 61854, 92365, 133875, 189120, 261256, 353889, 471105, 617500, 798210, 1018941, 1285999, 1606320, 1987500, 2437825, 2966301, 3582684, 4297510, 5122125, 6068715, 7150336, 8380944, 9775425, 11349625, 13120380, 15105546, 17324029, 19795815, 22542000
Offset: 1

Views

Author

Eric W. Weisstein, Jun 20 2017

Keywords

Crossrefs

Cf. A288961 (3-cycles), A288963 (5-cycles), A288960 (6-cycles).

Programs

  • Magma
    [n^2*(n-1)*(n^2-4*n+5)/4 : n in [1..50]]; // Wesley Ivan Hurt, Apr 23 2021
  • Mathematica
    Table[n^2 (n - 1) (n^2 - 4 n + 5)/4, {n, 20}]
    Table[n Binomial[n, 2] (n^2 - 4 n + 5)/2, {n, 20}]
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 9, 60, 250, 765}, 20]
    CoefficientList[Series[(x (1 + 3 x + 21 x^2 + 5 x^3))/(-1 + x)^6, {x, 0, 20}], x]

Formula

a(n) = n*binomial(n,2)*(n^2-4*n+5)/2.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6).
G.f.: (x^2*(1+3*x+21*x^2+5*x^3))/(-1+x)^6.