A288972 Number A(n,k) of Dyck paths having exactly k peaks in each of the levels 1,...,n and no other peaks; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 10, 1, 1, 1, 44, 471, 92, 1, 1, 1, 225, 27076, 82899, 1348, 1, 1, 1, 1182, 1713955, 102695344, 36913581, 28808, 1, 1, 1, 6321, 114751470, 147556480375, 1565018426896, 34878248649, 845800, 1
Offset: 0
Examples
. A(3,1) = 10: . . /\ /\ /\ /\ . /\/ \ / \/\ /\/ \ / \/\ . /\/ \ /\/ \ / \/\ / \/\ . . /\ /\ /\ . /\ / \ / \ /\ /\ / \ . /\/ \/ \ /\/ \/ \ / \/\/ \ . . /\ /\ /\ . /\ / \ / \ /\ / \ /\ . / \/ \/\ / \/\/ \ / \/ \/\ . . Square array A(n,k) begins: 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, ... 1, 2, 9, 44, 225, ... 1, 10, 471, 27076, 1713955, ... 1, 92, 82899, 102695344, 147556480375, ... 1, 1348, 36913581, 1565018426896, 81072887990665625, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..26, flattened
- Wikipedia, Counting lattice paths
Crossrefs
Programs
-
Maple
b:= proc(n, k, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, k, i, v-1)*(binomial(i, k)* binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))) end: A:= proc(n, k) option remember; `if`(n=0 or k=0, 1, add(b(w, k, k, n), w=k*n+n-1..k*n*(n+1)/2)) end: seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
b[n_, k_, j_, v_]:=b[n, k, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, k, i, v - 1] Binomial[i, k] Binomial[j - 1, i - 1 - k], {i, Min[j + k, n - j]}]]]; A[n_, k_]:=A[n, k]=If[n==0 || k==0, 1, Sum[b[w, k, k, n], {w, k*n + n - 1, k*n*(n + 1)/2}]]; Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Comments