cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288972 Number A(n,k) of Dyck paths having exactly k peaks in each of the levels 1,...,n and no other peaks; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 10, 1, 1, 1, 44, 471, 92, 1, 1, 1, 225, 27076, 82899, 1348, 1, 1, 1, 1182, 1713955, 102695344, 36913581, 28808, 1, 1, 1, 6321, 114751470, 147556480375, 1565018426896, 34878248649, 845800, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2017

Keywords

Comments

The semilengths of Dyck paths counted by A(n,k) are elements of the integer interval [k*n+n-1, k*n*(n+1)/2] for n,k>0.

Examples

			. A(3,1) = 10:
.
.        /\        /\          /\        /\
.     /\/  \      /  \/\    /\/  \      /  \/\
.  /\/      \  /\/      \  /      \/\  /      \/\
.
.                /\        /\                /\
.           /\  /  \      /  \  /\    /\    /  \
.        /\/  \/    \  /\/    \/  \  /  \/\/    \
.
.              /\        /\            /\
.         /\  /  \      /  \    /\    /  \  /\
.        /  \/    \/\  /    \/\/  \  /    \/  \/\  .
.
Square array A(n,k) begins:
  1,    1,        1,             1,                 1, ...
  1,    1,        1,             1,                 1, ...
  1,    2,        9,            44,               225, ...
  1,   10,      471,         27076,           1713955, ...
  1,   92,    82899,     102695344,      147556480375, ...
  1, 1348, 36913581, 1565018426896, 81072887990665625, ...
		

Crossrefs

Columns k=0-2 give: A000012, A289020, A289054.
Rows n=0+1,2,3 give: A000012, A176479, A289030.
Main diagonal gives A288940.

Programs

  • Maple
    b:= proc(n, k, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
          `if`(v<2, 0, add(b(n-j, k, i, v-1)*(binomial(i, k)*
           binomial(j-1, i-1-k)), i=1..min(j+k, n-j))))
        end:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(b(w, k, k, n), w=k*n+n-1..k*n*(n+1)/2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, k_, j_, v_]:=b[n, k, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, k, i, v - 1] Binomial[i, k] Binomial[j - 1, i - 1 - k], {i, Min[j + k, n - j]}]]]; A[n_, k_]:=A[n, k]=If[n==0 || k==0, 1, Sum[b[w, k, k, n], {w, k*n + n - 1, k*n*(n + 1)/2}]]; Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Indranil Ghosh, Jul 06 2017, after Maple code *)