Original entry on oeis.org
984, 286752, 102360024, 41113157376, 17612599690200, 7859501322760224, 3607454891819189208, 1690291743695465539584, 804566332578533745648600, 387754701670974543569133600, 188763097395728376240220054488
Offset: 1
Related to E_{k+2}/E_k:
A288995 (k=2),
A192731 (k=4), this sequence (k=6).
A289062
Coefficients in expansion of E_2^12/Product_{k>=1} (1-q^k)^24.
Original entry on oeis.org
1, -264, 30564, -2012800, 81099090, -1952940672, 22697326712, 63468624384, -4486982088465, 11373493964160, 616923039055284, -663002527580928, -77516928995402226, -352040146340083200, 5929423960701095640, 87636971447313802240, 269600086946598203619
Offset: 0
G.f.: (1-q)^264 * (1-q^2)^4152 * (1-q^3)^77064 * ... = 1 - 264*q + 30564*q^2 - 2012800*q^3 + 81099090*q^4 - 1952940672*q^5 + ... .
-
nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}])^12 / Product[(1 - x^k)^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)
A289344
Coefficients in expansion of E_2^(1/2)/Product_{k>=1} (1-q^k).
Original entry on oeis.org
1, -11, -118, -1473, -23635, -434861, -8659573, -181387821, -3936961298, -87743843970, -1996149058302, -46163368994680, -1082012001849499, -25646334881233711, -613664275728573585, -14803437882920457712, -359626550280367615329
Offset: 0
-
nmax = 20; CoefficientList[Series[Sqrt[1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]] / Product[1 - x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 03 2017 *)
A289350
Coefficients in expansion of E_2/Product_{k>=1} (1-q^k)^2.
Original entry on oeis.org
1, -22, -115, -350, -940, -2124, -4615, -9130, -17575, -32100, -57239, -98512, -166595, -274350, -445055, -708124, -1112002, -1719410, -2629450, -3970230, -5937238, -8785502, -12889630, -18741250, -27045445, -38724088, -55074057, -77791320, -109215025
Offset: 0
E_2^(m/2)/Product_{k>=1} (1-q^k)^m:
A289344 (m=1), this sequence (m=2),
A289062 (m=24).
-
nmax = 50; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[1, k]*x^k, {k, 1, nmax}]) / Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 08 2017 *)
Showing 1-4 of 4 results.