cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A289722 Irregular triangle read by rows: T(n,k) is the number of unordered pairs of nodes at distance k in the n-Apollonian network.

Original entry on oeis.org

6, 15, 6, 42, 72, 6, 123, 522, 258, 366, 2970, 3894, 396, 1095, 14838, 37332, 13680, 216, 3282, 68736, 278490, 224928, 24624, 9843, 303918, 1779678, 2517228, 754704, 22032, 29526, 1303938, 10269150, 22233096, 13114656, 1489104, 7776
Offset: 1

Views

Author

Andrew Howroyd, Sep 02 2017

Keywords

Comments

Row n has k in the range 1..1+floor(2*n/3).
Table gives the coefficients of the Wiener polynomials. The degree of the polynomial corresponds to the diameter of the graph.

Examples

			Triangle begins:
6;
15, 6;
42, 72, 6;
123, 522, 258;
366, 2970, 3894, 396;
1095, 14838, 37332, 13680, 216;
3282, 68736, 278490, 224928, 24624;
9843, 303918, 1779678, 2517228, 754704, 22032;
29526, 1303938, 10269150, 22233096, 13114656, 1489104, 7776;
...
		

Crossrefs

Cf. A289022.

Programs

  • Mathematica
    R[dp_, peq_, p1_, p2_] := {3*(dp - x + peq^2 + (2 + 7*x)*p1^2 + (7 + 2*x)*p2^2 + (4 + 2*x)*peq*p1 + 6*peq*p2 + 2*(4 + 5*x)*p1*p2 + x*(peq + 3*p1 + 3*p2)), x*(1 + 3*p1), 2*(p1 + p2), peq + p2};
    A[n_] := (v = {6*x, x, 0, 0}; For[i = 2, i <= n, i++, v = R @@ v]; v[[1]]);
    Table[CoefficientList[A[n], x] // Rest, {n, 1, 10}] // Flatten (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    R(dp, peq,p1,p2,x) = {[3*(dp - x + peq^2 + (2+7*x)*p1^2 + (7+2*x)*p2^2 + (4+2*x)*peq*p1 + 6*peq*p2 + 2*(4+5*x)*p1*p2 + x*(peq+3*p1+3*p2)), x*(1+3*p1), 2*(p1+p2), peq+p2]}
    A(n,x) = {my(v=[6*x,x,0,0,x]); for(i=2, n, v=R(v[1],v[2],v[3],v[4],x)); v[1]}
    for (n=1,10,print(Vec(polrecip(A(n,x))),";" ))

A192792 Molecular topological indices of the Apollonian graphs.

Original entry on oeis.org

72, 360, 2556, 22572, 219636, 2204244, 22197420, 222257988, 2207645892, 21754722852, 212845625820, 2069408197476, 20010127994676, 192565336573476, 1845376043710284, 17619057807964452, 167667905660138532, 1590879916369856484, 15054743317985652924
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(3 (3025 + 605 2^(2 + n) + 3 (-1)^n 2^(4 + n) + 605 2^(3 + 2 n) + 5 9^n (63 + 44 n) + 4 3^n (-277 + 55 n) + 35 2^(2 + n/2) Cos[n Pi/2] - 15 2^((7 + n)/2) Sin[n Pi/2]))/1210, {n, 20}]  (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{29, -320, 1676, -4109, 2537, 9182, -26346, 43920, -49896, 23328}, {72, 360, 2556, 22572, 219636, 2204244, 22197420, 222257988, 2207645892, 21754722852}, 20]  (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[36 (2 - 48 x + 421 x^2 - 1584 x^3 + 2096 x^4 + 1960 x^5 - 9573 x^6 + 17670 x^7 - 25056 x^8 + 15552 x^9)/((1 - x) (1 - 2 x) (1 - 3 x)^2 (1 - 4 x) (1 - 9 x)^2 (1 + 2 x) (1 + 2 x^2)), {x, 0, 50}], x]  (* Eric W. Weisstein, Sep 08 2017 *)
  • PARI
    Rec(mti, peq, p1, p2, weq, w1, w2, t, x) = {[3*(mti + 2*weq*peq + 2*(2+7*x)*w1*p1 + 2*(7+2*x)*w2*p2 + (4+2*x)*(weq*p1+peq*w1) + 6*(weq*p2+peq*w2) + 2*(4+5*x)*(w1*p2+p1*w2) + x*(weq+3*w1+3*w2) + 3*t*(peq+p1+2*p2) + 3*t*x*(t+1+2*p1+p2)), x*(1+3*p1), 2*(p1+p2), peq+p2, x*(3*t+3*w1), 2*(w1+w2), weq+w2, 2*t]}
    Fin(peq, p1, p2, t, x) = {(t+1)*(peq + p1 + 2*p2 + x*(t + 3 + 2*p1 + p2))}
    a(n) = { my(v=[18*x,x,0,0,3*x,0,0,2,x]);
    for(i=2, n, v=Rec(v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],x));
    subst(deriv(v[1] + 3*Fin(v[2],v[3],v[4],v[8],x)), x, 1);
    } \\ Andrew Howroyd, Sep 03 2017

Formula

From Andrew Howroyd, Sep 03 2017: (Start)
a(n) = 29*a(n-1) - 320*a(n-2) + 1676*a(n-3) - 4109*a(n-4) + 2537*a(n-5) + 9182*a(n-6) - 26346*a(n-7) + 43920*a(n-8) - 49896*a(n-9) + 23328*a(n-10) for n > 10.
G.f.: 36*x*(2 - 48*x + 421*x^2 - 1584*x^3 + 2096*x^4 + 1960*x^5 - 9573*x^6 + 17670*x^7 - 25056*x^8 + 15552*x^9)/((1 - x)*(1 - 2*x)*(1 - 3*x)^2*(1 - 4*x)*(1 - 9*x)^2*(1 + 2*x)*(1 + 2*x^2)).
(End)

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 03 2017
Showing 1-2 of 2 results.