cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289054 Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks.

Original entry on oeis.org

1, 1, 9, 471, 82899, 36913581, 34878248649, 62045165964951, 190543753640526939, 945931782247964900901, 7209377339218632463758129, 80920117567254715984058542191, 1292645840976784584918218615760819, 28557854803885245556927129118200208781
Offset: 0

Views

Author

Alois P. Heinz, Jun 23 2017

Keywords

Comments

The semilengths of Dyck paths counted by a(n) are elements of the integer interval [3*n-1, n*(n+1)] for n>0.

Examples

			. a(2) = 9:           /\/\        /\/\        /\/\             /\  /\
.                /\/\/    \    /\/    \/\    /    \/\/\   /\/\/  \/  \
.
.    /\    /\      /\  /\      /\      /\    /\    /\      /\  /\
. /\/  \/\/  \  /\/  \/  \/\  /  \/\/\/  \  /  \/\/  \/\  /  \/  \/\/\ .
		

Crossrefs

Column k=2 of A288972.

Programs

  • Maple
    b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
          `if`(v<2, 0, add(b(n-j, i, v-1)*(binomial(i, 2)*
           binomial(j-1, i-3)), i=1..min(j+2, n-j))))
        end:
    a:= n-> `if`(n=0, 1, add(b(w, 2, n), w=3*n-1..n*(n+1))):
    seq(a(n), n=0..15);
  • Mathematica
    b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1] Binomial[i, 2] Binomial[j - 1, i - 3], {i, Min[j + 2, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 2, n], {w, 3*n - 1, n(n + 1)}]]; Table[a[n], {n, 0, 15}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)