A289054 Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks.
1, 1, 9, 471, 82899, 36913581, 34878248649, 62045165964951, 190543753640526939, 945931782247964900901, 7209377339218632463758129, 80920117567254715984058542191, 1292645840976784584918218615760819, 28557854803885245556927129118200208781
Offset: 0
Keywords
Examples
. a(2) = 9: /\/\ /\/\ /\/\ /\ /\ . /\/\/ \ /\/ \/\ / \/\/\ /\/\/ \/ \ . . /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ . /\/ \/\/ \ /\/ \/ \/\ / \/\/\/ \ / \/\/ \/\ / \/ \/\/\ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..60
- Wikipedia, Counting lattice paths
Crossrefs
Column k=2 of A288972.
Programs
-
Maple
b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*(binomial(i, 2)* binomial(j-1, i-3)), i=1..min(j+2, n-j)))) end: a:= n-> `if`(n=0, 1, add(b(w, 2, n), w=3*n-1..n*(n+1))): seq(a(n), n=0..15);
-
Mathematica
b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1] Binomial[i, 2] Binomial[j - 1, i - 3], {i, Min[j + 2, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 2, n], {w, 3*n - 1, n(n + 1)}]]; Table[a[n], {n, 0, 15}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Comments