A289079 Number of orderless same-trees of weight n with all leaves equal to 1.
1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 13, 1, 3, 3, 22, 1, 16, 1, 15, 3, 3, 1, 151, 2, 3, 6, 17, 1, 41, 1, 334, 3, 3, 3, 637, 1, 3, 3, 275, 1, 56, 1, 21, 19, 3, 1, 15591, 2, 27, 3, 23, 1, 902, 3, 516, 3, 3, 1, 7858, 1, 3, 21, 69109, 3, 98, 1, 27, 3, 67, 1, 811756, 1
Offset: 1
Keywords
Examples
The a(12)=13 orderless same-trees with all leaves greater than 1 are: ((33)(33)), ((33)(222)), ((33)6), ((222)(222)), ((222)6), (66), ((22)(22)(22)), ((22)(22)4), ((22)44), (444), (3333), (222222), 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=1, 1, add( binomial(a(n/d)+d-1, d), d=divisors(n) minus {1})) end: seq(a(n), n=1..80); # Alois P. Heinz, Jul 05 2017
-
Mathematica
a[n_]:=If[n===1,1,Sum[Binomial[a[n/d]+d-1,d],{d,Rest[Divisors[n]]}]]; Array[a,100]
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = sumdiv(n, d, binomial(v[n/d]+d-1, d))); v} \\ Andrew Howroyd, Aug 20 2018
-
Python
from sympy import divisors, binomial l=[0, 1] for n in range(2, 101): l+=[sum([binomial(l[n//d] + d - 1, d) for d in divisors(n)[1:]]), ] l[1:] # Indranil Ghosh, Jul 06 2017
Formula
a(1) = 1, a(n>1) = Sum_{d|n, d>1} binomial(a(n/d)+d-1, d).
Comments