cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289079 Number of orderless same-trees of weight n with all leaves equal to 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 13, 1, 3, 3, 22, 1, 16, 1, 15, 3, 3, 1, 151, 2, 3, 6, 17, 1, 41, 1, 334, 3, 3, 3, 637, 1, 3, 3, 275, 1, 56, 1, 21, 19, 3, 1, 15591, 2, 27, 3, 23, 1, 902, 3, 516, 3, 3, 1, 7858, 1, 3, 21, 69109, 3, 98, 1, 27, 3, 67, 1, 811756, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2017

Keywords

Comments

a(n) is also the number of orderless same-trees of weight n with all leaves greater than 1.

Examples

			The a(12)=13 orderless same-trees with all leaves greater than 1 are: ((33)(33)), ((33)(222)), ((33)6), ((222)(222)), ((222)6), (66), ((22)(22)(22)), ((22)(22)4), ((22)44), (444), (3333), (222222), 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1, add(
          binomial(a(n/d)+d-1, d), d=divisors(n) minus {1}))
        end:
    seq(a(n), n=1..80);  # Alois P. Heinz, Jul 05 2017
  • Mathematica
    a[n_]:=If[n===1,1,Sum[Binomial[a[n/d]+d-1,d],{d,Rest[Divisors[n]]}]];
    Array[a,100]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = sumdiv(n, d, binomial(v[n/d]+d-1, d))); v} \\ Andrew Howroyd, Aug 20 2018
    
  • Python
    from sympy import divisors, binomial
    l=[0, 1]
    for n in range(2, 101): l+=[sum([binomial(l[n//d] + d - 1, d) for d in divisors(n)[1:]]), ]
    l[1:] # Indranil Ghosh, Jul 06 2017

Formula

a(1) = 1, a(n>1) = Sum_{d|n, d>1} binomial(a(n/d)+d-1, d).