A289143 Matching number of the n-triangular honeycomb acute knight graph.
0, 0, 3, 3, 6, 9, 12, 18, 21, 27, 33, 39, 45, 51, 60, 67, 75, 84, 94, 105, 114, 126, 138, 150, 162, 174, 189, 202, 216, 231, 247, 264, 279, 297, 315, 333, 351, 369, 390, 409, 429, 450, 472, 495, 516, 540, 564, 588, 612, 636, 663, 688, 714, 741, 769, 798, 825, 855, 885, 915, 945, 975, 1008, 1039, 1071, 1104, 1138, 1173, 1206, 1242, 1278, 1314
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Matching Number
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,-1,3,-3,1).
Programs
-
Mathematica
Table[Piecewise[{{3, n == 4}, {12, n == 7}}, (3 (n^2 + n - 3) + 5 Cos[n Pi/2] + 4 (-1)^n (Cos[n Pi/3] + Sqrt[3] Sin[n Pi/3]) (Cos[n Pi/2] - Sin[n Pi/2]) - 5 Sin[n Pi/2])/12], {n, 50}]
-
PARI
concat(vector(2), Vec( x^3*(3 - 6*x + 6*x^2 - 3*x^3 + 3*x^5 - 3*x^6 + 3*x^8 - 3*x^9 + 3*x^11 - 3*x^12 + x^13) / ((1 - x)^3*(1 + x^2)*(1 - x^2 + x^4)) + O(x^80))) \\ Colin Barker, Jun 26 2017
Formula
For n > 13, a(n) = (n^2-n+6-2*a(n-6))/2.
From Colin Barker, Jun 26 2017: (Start)
G.f.: x^3*(3 - 6*x + 6*x^2 - 3*x^3 + 3*x^5 - 3*x^6 + 3*x^8 - 3*x^9 + 3*x^11 - 3*x^12 + x^13) / ((1 - x)^3*(1 + x^2)*(1 - x^2 + x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-6) + 3*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)