cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289143 Matching number of the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

0, 0, 3, 3, 6, 9, 12, 18, 21, 27, 33, 39, 45, 51, 60, 67, 75, 84, 94, 105, 114, 126, 138, 150, 162, 174, 189, 202, 216, 231, 247, 264, 279, 297, 315, 333, 351, 369, 390, 409, 429, 450, 472, 495, 516, 540, 564, 588, 612, 636, 663, 688, 714, 741, 769, 798, 825, 855, 885, 915, 945, 975, 1008, 1039, 1071, 1104, 1138, 1173, 1206, 1242, 1278, 1314
Offset: 1

Views

Author

Eric W. Weisstein, Jun 26 2017

Keywords

Programs

  • Mathematica
    Table[Piecewise[{{3, n == 4}, {12, n == 7}}, (3 (n^2 + n - 3) + 5 Cos[n Pi/2] + 4 (-1)^n (Cos[n Pi/3] + Sqrt[3] Sin[n Pi/3]) (Cos[n Pi/2] - Sin[n Pi/2]) - 5 Sin[n Pi/2])/12], {n, 50}]
  • PARI
    concat(vector(2), Vec( x^3*(3 - 6*x + 6*x^2 - 3*x^3 + 3*x^5 - 3*x^6 + 3*x^8 - 3*x^9 + 3*x^11 - 3*x^12 + x^13) / ((1 - x)^3*(1 + x^2)*(1 - x^2 + x^4)) + O(x^80))) \\ Colin Barker, Jun 26 2017

Formula

For n > 13, a(n) = (n^2-n+6-2*a(n-6))/2.
From Colin Barker, Jun 26 2017: (Start)
G.f.: x^3*(3 - 6*x + 6*x^2 - 3*x^3 + 3*x^5 - 3*x^6 + 3*x^8 - 3*x^9 + 3*x^11 - 3*x^12 + x^13) / ((1 - x)^3*(1 + x^2)*(1 - x^2 + x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-6) + 3*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)