cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A287230 Number of matchings in the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 1, 8, 64, 1331, 64000, 6400075, 1404928000, 677298787768, 712186032947200, 1635557819719974912, 8209592592625295700893, 90036881979773511965369428, 2157454308508779392217680572439, 112955975573487831948842897960075264, 12921763288870998051759383983484279183072, 3229803978189426975602886931834056243712000000
Offset: 1

Views

Author

Eric W. Weisstein, May 22 2017

Keywords

Crossrefs

Extensions

a(11) from Eric W. Weisstein, Jun 25 2017
a(12)-a(14) from Andrew Howroyd, Jul 17 2017
a(15)-a(17) from Eric W. Weisstein, Sep 02 2025

A321486 Number of maximal matchings in the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

1, 1, 1, 27, 125, 1728, 76050, 4330747, 485587656, 108023929951, 43807783923008, 32822096942411776, 46378235999539384346, 122583565496980110411000
Offset: 1

Views

Author

Eric W. Weisstein, Nov 11 2018

Keywords

Crossrefs

Extensions

a(9) from Andrew Howroyd, Nov 11 2018
a(10)-a(14) from Eric W. Weisstein, Jan 26 2024

A348224 Lower matching number of the n-triangular honeycomb acute knight graph.

Original entry on oeis.org

0, 0, 3, 3, 3, 6, 9, 9, 15, 18, 18, 24, 29, 30, 39, 44, 45, 54, 62, 63, 75, 83, 84, 96, 106, 108, 123, 133, 135, 150, 163, 165, 183, 196, 198, 216, 231, 234, 255, 270, 273, 294, 312, 315, 339, 357, 360, 384, 404, 408, 435, 455, 459, 486, 509, 513, 543, 566
Offset: 1

Views

Author

Eric W. Weisstein, Oct 08 2021

Keywords

Crossrefs

Cf. A289143 (matching number of the n-triangular honeycomb acute knight graph).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, -1, 1}, {0, 0, 3, 3, 3, 6, 9, 9, 15, 18, 18, 24, 29, 30, 39, 44}, 20]
    CoefficientList[Series[x^2 (-3 - 3 x^4 - 3 x^6 - 2 x^10 - x^11)/((-1 + x)^3 (1 + x + x^2)^2 (1 + x^3 + x^6 + x^9)), {x, 0, 20}], x]

Formula

G.f.: x^3*(-3-3*x^4-3*x^6-2*x^10-x^11)/((-1+x)^3*(1+x+x^2)^2*(1+x^3+x^6+x^9)).
a(n) = a(n-1)+a(n-3)-a(n-4)+a(n-12)-a(n-13)-a(n-15)+a(n-16).

Extensions

a(16) and beyond from Eric W. Weisstein, Dec 07-08 2024
Showing 1-3 of 3 results.