A289173 The largest n-almost prime less than 3^n.
2, 6, 20, 60, 208, 624, 2080, 6240, 18720, 58240, 176000, 529408, 1593344, 4780032, 14344192, 43040768, 129138688, 387416064, 1162248192, 3486777344, 10460332032, 31380996096, 94142988288, 282428964864, 847286894592, 2541860683776, 7625582051328
Offset: 1
Keywords
Examples
a(26) = 2541860683776 = 3^26 - 5144553 = 2^18*3^6*47*283 (a 26-almost prime). From _Michael De Vlieger_, Jun 27 2017: (Start) Table of prime factors of a(n) for 1 <= n <= 16: 1: 2 2: 2 3 3: 2 2 5 4: 2 2 3 5 5: 2 2 2 2 13 6: 2 2 2 2 3 13 7: 2 2 2 2 2 5 13 8: 2 2 2 2 2 3 5 13 9: 2 2 2 2 2 3 3 5 13 10: 2 2 2 2 2 2 2 5 7 13 11: 2 2 2 2 2 2 2 5 5 5 11 12: 2 2 2 2 2 2 2 2 2 2 11 47 13: 2 2 2 2 2 2 2 2 2 2 2 2 389 14: 2 2 2 2 2 2 2 2 2 2 2 2 3 389 15: 2 2 2 2 2 2 2 2 2 2 2 2 2 17 103 16: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 37 71(End)
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A078843 (where 3^n occurs in n-almost primes).
Programs
-
Mathematica
Table[SelectFirst[Range[3^n - 1, 2^n, -1], PrimeOmega@ # == n &], {n, 18}] (* Michael De Vlieger, Jun 27 2017 *)
-
PARI
for (n = 1,26, m = 3^n-1; while(bigomega(m) <> n, m = m-2); print1 (m ","))
-
PARI
a(n)=my(target=n-1); forstep(k=3^n\2,1,-1, if(bigomega(k)==target, return(2*k))) \\ Charles R Greathouse IV, Jul 05 2017
-
Python
from math import prod, isqrt from sympy import primepi, primerange, integer_nthroot def A289173(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def almostprimepi(n,k): if k==0: return int(n>=1) def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n)) m = almostprimepi(3**n-1,n) def f(x): return m+x-almostprimepi(x,n) return bisection(f,m,m) # Chai Wah Wu, Mar 29 2025
Extensions
a(27) from Jon E. Schoenfield, Jul 02 2017
Comments