A289179 Edge count of the n X n white bishop graph.
0, 1, 4, 14, 28, 55, 88, 140, 200, 285, 380, 506, 644, 819, 1008, 1240, 1488, 1785, 2100, 2470, 2860, 3311, 3784, 4324, 4888, 5525, 6188, 6930, 7700, 8555, 9440, 10416, 11424, 12529, 13668, 14910, 16188, 17575, 19000, 20540, 22120, 23821, 25564, 27434, 29348, 31395
Offset: 1
Keywords
Links
- Eric Weisstein's World of Mathematics, Edge Count
- Eric Weisstein's World of Mathematics, White Bishop Graph
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -4, 1, 2, -1).
Crossrefs
Cf. A225972 (black bishop graph edge count).
Programs
-
Mathematica
Table[(n - 1) (4 n^2 - 2 n - 3 + 3 (-1)^n)/12, {n, 20}] LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 4, 14, 28, 55}, 20] CoefficientList[Series[x(x + 2 x^2+ 5 x^3)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Corrected by Georg Fischer, May 19 2019 *)
Formula
a(n) = ((-1 + n)*(-3 + 3*(-1)^n - 2*n + 4*n^2))/12.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f. = x*(x + 2x^2 + 5x^3)/((-1 + x)^4*(1 + x)^2). [Corrected by Georg Fischer, May 19 2019]
Comments