cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289179 Edge count of the n X n white bishop graph.

Original entry on oeis.org

0, 1, 4, 14, 28, 55, 88, 140, 200, 285, 380, 506, 644, 819, 1008, 1240, 1488, 1785, 2100, 2470, 2860, 3311, 3784, 4324, 4888, 5525, 6188, 6930, 7700, 8555, 9440, 10416, 11424, 12529, 13668, 14910, 16188, 17575, 19000, 20540, 22120, 23821, 25564, 27434, 29348, 31395
Offset: 1

Views

Author

Eric W. Weisstein, Jun 27 2017

Keywords

Comments

Sequence extended to a(1) using formula.

Crossrefs

Cf. A225972 (black bishop graph edge count).

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 2 n - 3 + 3 (-1)^n)/12, {n, 20}]
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 4, 14, 28, 55}, 20]
    CoefficientList[Series[x(x + 2 x^2+ 5 x^3)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Corrected by Georg Fischer, May 19 2019 *)

Formula

a(n) = ((-1 + n)*(-3 + 3*(-1)^n - 2*n + 4*n^2))/12.
a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6).
G.f. = x*(x + 2x^2 + 5x^3)/((-1 + x)^4*(1 + x)^2). [Corrected by Georg Fischer, May 19 2019]