cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A289222 Triangle read by rows: T(n, k) is the number of ways to select k disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

1, 1, 1, 1, 4, 0, 1, 9, 12, 4, 1, 16, 66, 82, 13, 0, 1, 25, 204, 670, 859, 420, 76, 0, 1, 36, 480, 3028, 9585, 15108, 10956, 2910, 231, 2, 1, 49, 960, 9780, 56520, 190371, 371016, 404746, 235380, 68793, 9030, 252, 0, 1, 64, 1722, 25574, 231635, 1336320, 4988324
Offset: 1

Views

Author

Heinrich Ludwig, Jul 03 2017

Keywords

Comments

The row index starts from 1. The column index k runs from 0 to floor(n*(n+1)/6), which is a trivial upper bound for the maximal number of 2 X 2 X 2 triangles that can be selected from an n X n X n triangular grid.
Rotations and reflections of a selection are regarded as different. If they are not to be counted, see A289229.

Examples

			The triangle begins:
  1;
  1,  1;
  1,  4,   0;
  1,  9,  12,    4;
  1, 16,  66,   82,   13,     0;
  1, 25, 204,  670,  859,   420,    76,    0;
  1, 36, 480, 3028, 9585, 15108, 10956, 2910, 231, 2;
		

Crossrefs

A289224 Number of ways to select 3 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 4, 82, 670, 3028, 9780, 25574, 57862, 117800, 221268, 390010, 652894, 1047292, 1620580, 2431758, 3553190, 5072464, 7094372, 9743010, 13163998, 17526820, 23027284, 29890102, 38371590, 48762488, 61390900, 76625354, 94877982, 116607820, 142324228, 172590430, 208027174
Offset: 3

Views

Author

Heinrich Ludwig, Jun 28 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289230.

Examples

			There are four ways to choose three 2 X 2 X 2 triangles (aaa, bbb, ccc) from a 4 X 4 X 4 point grid, for example:
      a           a
     a a         a a
    b c c       b . c
   b b c .     b b c c
The other 2 possible selections are rotations of the first one.
Note: aaa, bbb, ccc are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • Maple
    A289224:=n->(n^6-6*n^5-24*n^4+208*n^3-67*n^2-1684*n+2712)/6: seq(A289224(n), n=3..50); # Wesley Ivan Hurt, Jun 28 2017
  • Mathematica
    Table[(n^6 - 6 n^5 - 24 n^4 + 208 n^3 - 67 n^2 - 1684 n + 2712)/6, {n, 3, 34}] (* or *)
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 4, 82, 670, 3028, 9780, 25574}, 32] (* or *)
    Drop[#, 3] &@ CoefficientList[Series[2 x^4*(2 + 27 x + 90 x^2 - 40 x^3 - 38 x^4 + 19 x^5)/(1 - x)^7, {x, 0, 34}], x] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    a(n) = (n^6 - 6*n^5 - 24*n^4 + 208*n^3 - 67*n^2 - 1684*n + 2712)/6 \\ Charles R Greathouse IV, Jun 28 2017
    
  • PARI
    concat(0, Vec(2*x^4*(2 + 27*x + 90*x^2 - 40*x^3 - 38*x^4 + 19*x^5) / (1 - x)^7 + O(x^60))) \\ Colin Barker, Jun 29 2017

Formula

a(n) = (n^6 -6*n^5 -24*n^4 +208*n^3 -67*n^2 -1684*n +2712)/6.
From Colin Barker, Jun 29 2017: (Start)
G.f.: 2*x^4*(2 + 27*x + 90*x^2 - 40*x^3 - 38*x^4 + 19*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)

A289226 Number of ways to select 5 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 420, 15108, 190371, 1336320, 6528948, 24951780, 79851975, 223419840, 562591836, 1301255556, 2806131075, 5705746752, 11034449244, 20436317412, 36447218199, 62877079680, 105318792564, 171815016708, 273719593923, 426796282752, 652604165220, 980226360036, 1448406641607
Offset: 5

Views

Author

Heinrich Ludwig, Jul 01 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289232.

Examples

			There are 420 ways to choose five 2 X 2 X 2 triangles (aaa, ..., eee) from a 6 X 6 X 6 point grid, for example:
        .               a
       . .             a a
      . . .           . d .
     a a b b         b d d c
    c a d b e       b b e c c
   c c d d e e     . . e e . .
Note: aaa, ..., eee are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(3*x^6*(140 + 3496*x + 15761*x^2 + 1293*x^3 - 18129*x^4 + 3779*x^5 + 6103*x^6 - 1637*x^7 - 1139*x^8 + 413*x^9) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Jul 01 2017

Formula

a(n) = (n^10 -10*n^9 -85*n^8 +1160*n^7 +1345*n^6 -49162*n^5 +62145*n^4 +892140*n^3 -2198566*n^2 -5725008*n +18190440)/120.
G.f.: 3*x^6*(140 + 3496*x + 15761*x^2 + 1293*x^3 - 18129*x^4 + 3779*x^5 + 6103*x^6 - 1637*x^7 - 1139*x^8 + 413*x^9) / (1 - x)^11. - Colin Barker, Jul 01 2017

A289223 Number of ways to select 2 disjoint point triples from an n X n X n triangular point grid, each point triple forming an 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 0, 12, 66, 204, 480, 960, 1722, 2856, 4464, 6660, 9570, 13332, 18096, 24024, 31290, 40080, 50592, 63036, 77634, 94620, 114240, 136752, 162426, 191544, 224400, 261300, 302562, 348516, 399504, 455880, 518010, 586272, 661056, 742764, 831810, 928620, 1033632, 1147296
Offset: 2

Views

Author

Heinrich Ludwig, Jun 28 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A117662(n-1).

Examples

			There are 12 ways to choose two 2 X 2 X 2 triangles (xxx) from a 4 X 4 X 4 point grid, for example:
      x           x          x
     x x         x x        x x
    . x x       x . .      . x .
   . . x .     x x . .    . x x .
The other nine selections are reflections or rotations of these three.
		

Crossrefs

Programs

  • PARI
    Vec(6*x^4*(2 - x)*(1 + x) / (1 - x)^5 + O(x^60)) \\ Colin Barker, Jun 28 2017

Formula

a(n) = (n^4 -4*n^3 -7*n^2 +46*n -48)/2 for n>=2.
From Colin Barker, Jun 28 2017: (Start)
G.f.: 6*x^4*(2 - x)*(1 + x) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6.
(End)

A289227 Number of ways to select 6 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 76, 10956, 371016, 4988324, 39302784, 218633416, 952344088, 3460482612, 10932805668, 30901640212, 79762409256, 190898410020, 428596770008, 910935932112, 1846146025240, 3588666200596, 6723331905852, 12188915557404, 21455723224456, 36776237135268, 61533021405936
Offset: 5

Views

Author

Heinrich Ludwig, Jul 01 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different.

Examples

			There are 76 ways to choose six 2 X 2 X 2 triangles (aaa, ..., fff) from a 6 X 6 X 6 point grid, for example:
        a               a
       a a             a a
      . . .           b . c
     b b c c         b b c c
    d b e c f       d . e . f
   d d e e f f     d d e e f f
Note: aaa, ..., fff are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(4*x^6*(19 + 2492*x + 58629*x^2 + 249487*x^3 + 78686*x^4 - 397088*x^5 + 93163*x^6 + 160960*x^7 - 77014*x^8 - 10728*x^9 + 4312*x^10 + 5013*x^11 - 1611*x^12) / (1 - x)^13 + O(x^40))) \\ Colin Barker, Jul 01 2017

Formula

a(n) = (n^12 -12*n^11 -129*n^10 +2090*n^9 +3985*n^8 -142832*n^7 +152809*n^6 +4752598*n^5 -12392266*n^4 -76011076*n^3 +274393360*n^2 +455879232*n -2015187840)/720 for n>=6.
G.f.: 4*x^6*(19 + 2492*x + 58629*x^2 + 249487*x^3 + 78686*x^4 - 397088*x^5 + 93163*x^6 + 160960*x^7 - 77014*x^8 - 10728*x^9 + 4312*x^10 + 5013*x^11 - 1611*x^12) / (1 - x)^13. - Colin Barker, Jul 01 2017

A289228 Number of ways to select 7 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 2910, 404746, 12025068, 165279612, 1405048082, 8605979390, 41555851716, 167529980320, 586136559350, 1829074790082, 5193890370940, 13625393372916, 33410188057962, 77284672892438, 169909353488372, 357177283295160, 721559475338446, 1406717921047994, 2656028041092876
Offset: 6

Views

Author

Heinrich Ludwig, Jul 01 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different.

Examples

			There are 2910 ways to choose seven 2 X 2 X 2 triangles (aaa, ..., ggg) from a 7 X 7 X 7 point grid, for example:
          a
         a a
        b . c
       b b c c
      d d . e e
     f d . . e g
    f f . . . g g
Note: aaa, ..., ggg are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(2*x^7*(1455 + 180548*x + 3129714*x^2 + 13038936*x^3 + 4149381*x^4 - 21524480*x^5 + 3658074*x^6 + 12791138*x^7 - 6864973*x^8 - 1299402*x^9 + 1667400*x^10 - 272962*x^11 + 37953*x^12 - 60178*x^13 + 16036*x^14) / (1 - x)^15 + O(x^40))) \\ Colin Barker, Jul 01 2017

Formula

a(n) = (n^14 -14*n^13 -182*n^12 +3416*n^11 +9072*n^10 -342062*n^9 +296688*n^8 +17893944*n^7 -48845153*n^6 -511039228*n^5 +2041220174*n^4 +7429535400*n^3 -37737333320*n^2 -41483946096*n +262680697440)/5040 for n>=7.
G.f.: 2*x^7*(1455 + 180548*x + 3129714*x^2 + 13038936*x^3 + 4149381*x^4 - 21524480*x^5 + 3658074*x^6 + 12791138*x^7 - 6864973*x^8 - 1299402*x^9 + 1667400*x^10 - 272962*x^11 + 37953*x^12 - 60178*x^13 + 16036*x^14) / (1 - x)^15. - Colin Barker, Jul 01 2017

A289231 Number of nonequivalent ways to select 4 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 4, 159, 1644, 9548, 38872, 125367, 342831, 829052, 1822785, 3714519, 7113539, 12935256, 22511616, 37728563, 61194888, 96446684, 148191316, 222597315, 327633979, 473466444, 672912717, 941968139, 1300402591, 1772439504, 2387521212, 3181168199, 4195941108, 5482512012
Offset: 4

Views

Author

Heinrich Ludwig, Jun 30 2017

Keywords

Comments

Rotations and reflections of a selection are not counted. If they are to be counted see A289225.

Examples

			There are four nonequivalent ways to choose four 2 X 2 X 2 triangles (aaa, ..., ddd) from a 5 X 5 X 5 point grid:
      a           a           a           .
     a a         a a         a a         a a
    b c c       . d .       . . .       . a .
   b b c d     b d d c     b c c d     b c c d
  . . . d d   b b . c c   b b c d d   b b c d d
Note: aaa, ..., ddd are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^5*(4 + 143*x + 1024*x^2 + 3612*x^3 + 7423*x^4 + 10001*x^5 + 8395*x^6 + 3273*x^7 - 1362*x^8 - 2393*x^9 - 878*x^10 + 488*x^11 + 539*x^12 + 101*x^13 - 89*x^14 - 41*x^15) / ((1 - x)^9*(1 + x)^2*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Jun 30 2017

Formula

a(n) = (n^8 -8*n^7 -50*n^6 +556*n^5 +261*n^4 -12724*n^3 +19088*n^2 +86016*n -201024)/144 + IF(MOD(n, 2) = 1, -2*n +5)/4 + IF(MOD(n, 3) = 1, -n^2 +2*n +12)/9.
G.f.: x^5*(4 + 143*x + 1024*x^2 + 3612*x^3 + 7423*x^4 + 10001*x^5 + 8395*x^6 + 3273*x^7 - 1362*x^8 - 2393*x^9 - 878*x^10 + 488*x^11 + 539*x^12 + 101*x^13 - 89*x^14 - 41*x^15) / ((1 - x)^9*(1 + x)^2*(1 + x + x^2)^3). - Colin Barker, Jun 30 2017
Showing 1-7 of 7 results.