A289233 Largest number of disjoint point triples that can be chosen from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.
0, 1, 1, 3, 4, 6, 9, 11, 15, 18, 22, 26, 30, 35, 39, 45, 50, 56, 63, 69, 77, 84, 92, 100, 108, 117, 125, 135, 144, 154, 165, 175, 187, 198, 210, 222, 234, 247, 259, 273, 286, 300, 315, 329, 345, 360, 376, 392, 408, 425, 441, 459, 476, 494, 513, 531, 551, 570
Offset: 1
Keywords
Examples
From a 21 X 21 X 21 point grid up to 77 disjoint 2 X 2 X 2 triangles (aaa, bbb, ...) can be chosen. Selections like the one below with no point left are very rare compared to C(400, 77). 400 is the total number of 2 X 2 X 2 triangles in the 21-grid. a a a c c b d c b b d d f f e h h g f e e i h g g k k j i i l m m k j j p p l l m n q q o r p s t t n n q o o r r s s t u w w x x v y a a b b u u w z x v v y y a c b d f f z z g g e j j h c c d d f i k k g e e l j h h m m n n i i k o o p p l l w w q m r n s x x t o u p v y z z w q q r r s s x t t u u v v y y z f f a g g b h h c i i d j j e k k l l f a a g b b h c c i d d j e e m k n l o u u p v v q w w r x x s y y t m m n n o o u p p v q q w r r x s s y t t
Links
- J. H. Conway and J. C. Lagarias, Tiling with Polyominoes and Combinatorial Group Theory, JCTA 53 (1990), 183-208.
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, -2, 2, 1, 0, -2, 1).
Programs
-
Mathematica
f[n_] := Floor[n (n +1)/6] - If[ !MemberQ[{3, 5, 6, 8}, Mod[n, 12]], 0, 1]; Array[f, 58] (* or *) CoefficientList[ Series[(-x +x^2 -x^3 +x^4 -x^5)/((-1 +x)^3 (1 +x -x^3 +x^5 +x^6)), {x, 0, 57}], x] (* or *) LinearRecurrence[{2, 0, -1, -2, 2, 1, 0, -2, 1}, {0, 1, 1, 3, 4, 6, 9, 11, 15}, 58] (* Robert G. Wilson v, Dec 26 2017 *)
Formula
G.f.: x*(1 - x + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)*(1 - x^2 + x^4)) (conjectured). - Colin Barker, Jul 08 2017
a(n) = floor(n*(n+1)/6) except when n mod 12 is 3, 5, 6, or 8; in those cases, a(n) = floor(n*(n+1)/6) - 1. - Jon E. Schoenfield, Dec 25 2017
Extensions
a(22)-a(26) from Jon E. Schoenfield, Aug 16 2017
a(27)-a(28) from Rob Pratt, Dec 19 2017
More terms from Jon E. Schoenfield, Dec 25 2017
Comments