cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289260 Coefficients in the expansion of 1/([r]-[2r]x+[3r]x^2-...); [ ]=floor, r=8/5.

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1286, 2182, 3702, 6278, 10646, 18054, 30614, 51910, 88022, 149254, 253078, 429126, 727638, 1233798, 2092054, 3547334, 6014934, 10199046, 17293718, 29323590, 49721686, 84309126, 142956310, 242399686, 411017942
Offset: 0

Views

Author

Clark Kimberling, Jul 14 2017

Keywords

Comments

Conjecture: the sequence is strictly increasing.

Crossrefs

Cf. A078140 (includes guide to related sequences), A289265.
Cf. A279780.

Programs

  • Mathematica
    r = 8/5;
    u = 1000; (* # initial terms from given series *)
    v = 100;   (* # coefficients in reciprocal series *)
    CoefficientList[Series[1/Sum[Floor[r*(k + 1)] (-x)^k, {k, 0, u}], {x, 0, v}], x]
    LinearRecurrence[{2,-1,2,-2},{1,3,5,9,17,30,52},40] (* Harvey P. Dale, Oct 13 2023 *)
  • PARI
    Vec((1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)) + O(x^50)) \\ Colin Barker, Jul 20 2017

Formula

G.f.: 1/(Sum_{k>=0} [(k+1)*r](-x)^k), where r = 8/5 and [ ] = floor.
From Colin Barker, Jul 14 2017: (Start)
G.f.: (1 + x)^2*(1 - x + x^2 - x^3 + x^4) / ((1 - x)*(1 - x - 2*x^3)).
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 2*a(n-4) for n>3.
(End)
a(n) = abs(A279780(n)). - Alois P. Heinz, Jul 15 2017