cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289269 Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational and reflectional, i.e. dihedral, symmetry.

Original entry on oeis.org

0, 2, 4, 19, 80, 638, 6054, 76692, 1137284, 19405244, 370597430, 7825459362, 180862277352, 4540781512946, 123053646087312, 3580073396748560, 111297799861936256, 3682093529146577694, 129163727524848878358, 4788738149626920381804, 187102616692953377567060
Offset: 1

Views

Author

Marko Riedel, Jun 29 2017

Keywords

Comments

The case n=2 is a degenerate polygon (two sides connecting two vertices). The two possibilities are when the edges cross and do not cross. Polygons start at n=3 with a triangle.

Crossrefs

See A053871 for tiles with no symmetries being taken into account, A289191 for tiles with rotational symmetries only being taken into account.

Programs

  • PARI
    \\ here R(n) is A289191.
    S(n)={sum(i=0, n\2, (-1)^i * sum(j=0, (n-2*i)\2, (2*j)!/j! * if(n%2, if(j, 2*binomial(n\2, i)*binomial(n-2*i-1, 2*j-1)), binomial(n/2, i)*binomial(n-2*i, 2*j) + if(j, binomial(n/2-1, i)*binomial(n-2*i-2, 2*j-2))) / 2))}
    R(n)={sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n}
    a(n)={(R(n) + S(n))/2} \\ Andrew Howroyd, Jan 26 2020

Extensions

Terms a(14) and beyond from Andrew Howroyd, Jan 26 2020