A289269 Number of polygonal tiles with n sides with two exits per side and n edges connecting pairs of exits, with no edges between exits on the same side and non-isomorphic under rotational and reflectional, i.e. dihedral, symmetry.
0, 2, 4, 19, 80, 638, 6054, 76692, 1137284, 19405244, 370597430, 7825459362, 180862277352, 4540781512946, 123053646087312, 3580073396748560, 111297799861936256, 3682093529146577694, 129163727524848878358, 4788738149626920381804, 187102616692953377567060
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Marko Riedel, Hexagonal tiles
- Marko Riedel, Maple code to compute number of tiles by ordinary enumeration and by Power Group Enumeration
- Marko Riedel, Maple code for number of tiles using Burnside lemma.
Crossrefs
Programs
-
PARI
\\ here R(n) is A289191. S(n)={sum(i=0, n\2, (-1)^i * sum(j=0, (n-2*i)\2, (2*j)!/j! * if(n%2, if(j, 2*binomial(n\2, i)*binomial(n-2*i-1, 2*j-1)), binomial(n/2, i)*binomial(n-2*i, 2*j) + if(j, binomial(n/2-1, i)*binomial(n-2*i-2, 2*j-2))) / 2))} R(n)={sumdiv(n, d, my(m=n/d); eulerphi(d)*sum(i=0, m, (-1)^i * binomial(m, i) * sum(j=0, m-i, (d%2==0 || m-i-j==0) * binomial(2*(m-i), 2*j) * d^j * (2*j)! / (j!*2^j) )))/n} a(n)={(R(n) + S(n))/2} \\ Andrew Howroyd, Jan 26 2020
Extensions
Terms a(14) and beyond from Andrew Howroyd, Jan 26 2020
Comments