A289271 A bijective binary representation of the prime factorization of a number, shown in decimal (see Comments for precise definition).
0, 1, 2, 4, 8, 3, 16, 32, 64, 5, 128, 6, 256, 9, 10, 512, 1024, 17, 2048, 12, 18, 33, 4096, 34, 8192, 65, 16384, 20, 32768, 7, 65536, 131072, 66, 129, 24, 36, 262144, 257, 130, 40, 524288, 11, 1048576, 68, 72, 513, 2097152, 258, 4194304, 1025, 514, 132
Offset: 1
Examples
For n = 204 = 2^2 * 3 * 17: - S_204 = A000961 \ { 2^3, 2^4, ..., 3^2, ... } = { 1, 2, 3, 4, 5, 7, 11, 13, 17, ... }, - a(204) = 2^#{ 2, 3 } + 2^#{ 2 } + 2^#{ 2, 3, 4, 5, 7, 11, 13 } = 2^2 + 2^1 + 2^7 = 134. See also the illustration of the first terms in Links section.
Links
Crossrefs
Programs
-
PARI
See Links section.
-
PARI
A289271(n) = { my(f = factor(n), pps = vecsort(vector(#f~, i, f[i, 1]^f[i, 2])), s=0, x=1, pp=1, k=-1); for(i=1,#f~, while(pp < pps[i], pp++; while(!isprimepower(pp)||(gcd(pp,x)>1), pp++); k++); s += 2^k; x *= pp); (s); }; \\ Antti Karttunen, Jan 01 2019
Comments