cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289271 A bijective binary representation of the prime factorization of a number, shown in decimal (see Comments for precise definition).

Original entry on oeis.org

0, 1, 2, 4, 8, 3, 16, 32, 64, 5, 128, 6, 256, 9, 10, 512, 1024, 17, 2048, 12, 18, 33, 4096, 34, 8192, 65, 16384, 20, 32768, 7, 65536, 131072, 66, 129, 24, 36, 262144, 257, 130, 40, 524288, 11, 1048576, 68, 72, 513, 2097152, 258, 4194304, 1025, 514, 132
Offset: 1

Views

Author

Rémy Sigrist, Jun 30 2017

Keywords

Comments

For n > 0, with prime factorization Product_{i=1..k} p_i ^ e_i (all p_i distinct and all e_i > 0):
- let S_n = A000961 \ { p_i ^ (e_i + j) with i=1..k and j > 0 },
- a(n) = Sum_{i=1..k} 2^#{ s in S_n with 1 < s < p_i ^ e_i }.
In an informal way, we encode the prime powers > 1 that are unitary divisors of n as 1's in binary, while discarding the 0's corresponding to their "proper" multiples.
a(A002110(n)) = 2^n-1 for any n >= 0.
a(A000961(n+1)) = 2^(n-1) for any n > 0.
A000120(a(n)) = A001221(n) for any n > 0 (each prime divisor p of n (alongside the p-adic valuation of n) is encoded as a single 1 bit in the base-2 representation of a(n)).
A000961(2+A007814(a(n))) = A034684(n) for any n > 1 (the least significant bit of a(n) encodes the smallest unitary divisor of n that is larger than 1).
This sequence establishes a bijection between the positive numbers and the nonnegative numbers; see A289272 for the inverse of this sequence.
The numbers 4, 36, 40 and 532 equal their image; are there other such numbers?
This sequence has connections with A034729 (which encodes the divisors of a number, and is not surjective) and A087207 (which encodes the prime divisors of a number, and is not injective).

Examples

			For n = 204 = 2^2 * 3 * 17:
- S_204 = A000961 \ { 2^3, 2^4, ..., 3^2, ... }
        = { 1, 2, 3, 4, 5, 7, 11, 13, 17, ... },
- a(204) = 2^#{ 2, 3 } + 2^#{ 2 } + 2^#{ 2, 3, 4, 5, 7, 11, 13 }
         = 2^2 + 2^1 + 2^7
         = 134.
See also the illustration of the first terms in Links section.
		

Crossrefs

Cf. also A156552, A052331 for similar constructions.

Programs

  • PARI
    See Links section.
    
  • PARI
    A289271(n) = { my(f = factor(n), pps = vecsort(vector(#f~, i, f[i, 1]^f[i, 2])), s=0, x=1, pp=1, k=-1); for(i=1,#f~, while(pp < pps[i], pp++; while(!isprimepower(pp)||(gcd(pp,x)>1), pp++); k++); s += 2^k; x *= pp); (s); }; \\ Antti Karttunen, Jan 01 2019