cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A289272 Inverse to A289271.

Original entry on oeis.org

1, 2, 3, 6, 4, 10, 12, 30, 5, 14, 15, 42, 20, 70, 60, 210, 7, 18, 21, 66, 28, 90, 84, 330, 35, 126, 105, 462, 140, 630, 420, 2310, 8, 22, 24, 78, 36, 110, 132, 390, 40, 154, 120, 546, 180, 770, 660, 2730, 56, 198, 168, 858, 252, 990, 924, 4290, 280, 1386, 840
Offset: 0

Views

Author

Rémy Sigrist, Jun 30 2017

Keywords

Comments

a(2^n-1) = A002110(n) for any n >= 0.
a(2^(n-1)) = A000961(n+1) for any n > 0.
A001221(a(n)) = A000120(n) for any n >= 0.
From Antti Karttunen, Jan 01 2019: (Start)
A034684(a(n)) = A000961(1+A001511(n)) for any n >= 1. (See also Rémy Sigrist's comment in A289271).
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A322991(k), and each right hand child contains A322992(k), when their parent contains k:
1
|
...................2...................
3 6
4......../ \........10 12......../ \........30
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 14 15 42 20 70 60 210
7 18 21 66 28 90 84 330 35 126 105 462 140 630 420 2310
etc.
The leftmost edge is A000961, the next lefmost is A278568 (after 2: 6, 10, 14, 18, ...), the righmost edge is A002110, the next rightmost A088860 but with 3 instead of 4.
Compare also to trees like A005940 (A163511) and A052330.
(End)

Examples

			A289271(1) = 0, hence a(0) = 1.
A289271(2) = 1, hence a(1) = 2.
A289271(3) = 2, hence a(2) = 3.
A289271(4) = 4, hence a(4) = 4.
A289271(5) = 8, hence a(8) = 5.
A289271(6) = 3, hence a(3) = 6.
A289271(7) = 16, hence a(16) = 7.
A289271(8) = 32, hence a(32) = 8.
A289271(9) = 64, hence a(64) = 9.
A289271(10) = 5, hence a(5) = 10.
		

Crossrefs

Programs

  • PARI
    See Links section.
    
  • PARI
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); }; \\ Antti Karttunen, Jan 01 2019

A322990 a(n) = A289272(floor(A289271(n)/2)).

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 5, 7, 8, 3, 9, 6, 11, 4, 10, 13, 16, 5, 17, 12, 14, 7, 19, 18, 23, 8, 25, 15, 27, 6, 29, 31, 22, 9, 20, 21, 32, 11, 26, 28, 37, 10, 41, 24, 36, 13, 43, 34, 47, 16, 38, 33, 49, 17, 44, 35, 46, 19, 53, 30, 59, 23, 40, 61, 52, 14, 64, 39, 50, 12, 67, 56, 71, 25, 54, 48, 45, 18, 73, 68, 79, 27, 81, 42, 76, 29, 58, 63, 83, 15, 55, 51, 62, 31, 92
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2019

Keywords

Comments

For all n > 1, in the binary tree illustrated in A289272, the node which contains (has value) n, its parent node has value a(n).
Each n occurs exactly twice in this sequence.

Crossrefs

Programs

  • PARI
    A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); };
    A322990(n) = A289272(A289271(n)>>1);

Formula

a(n) = A289272(floor(A289271(n)/2)).

A322991 a(n) = A289272(2*A289271(n)).

Original entry on oeis.org

1, 3, 4, 5, 7, 12, 8, 9, 11, 15, 13, 20, 16, 21, 28, 17, 19, 24, 23, 35, 36, 33, 25, 44, 27, 39, 29, 40, 31, 60, 32, 37, 52, 48, 56, 45, 41, 51, 68, 63, 43, 84, 47, 55, 77, 57, 49, 76, 53, 69, 92, 65, 59, 75, 91, 72, 100, 87, 61, 140, 64, 93, 88, 67, 112, 132, 71, 80, 108, 105, 73, 99, 79, 96, 116, 85, 104, 156, 81, 119, 83, 111, 89
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2019

Keywords

Crossrefs

Permutation of A042965 (apart from zero).
Cf. also A003963, A300841.

Programs

  • PARI
    A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); };
    A322991(n) = A289272(2*A289271(n));

Formula

a(n) = A289272(2*A289271(n)).

A322992 a(n) = A289272(1+(2*A289271(n))).

Original entry on oeis.org

2, 6, 10, 14, 18, 30, 22, 26, 34, 42, 38, 70, 46, 66, 90, 50, 54, 78, 58, 126, 110, 102, 62, 130, 74, 114, 82, 154, 86, 210, 94, 98, 170, 138, 198, 182, 106, 150, 190, 234, 118, 330, 122, 238, 306, 174, 134, 230, 142, 186, 270, 266, 146, 222, 342, 286, 290, 246, 158, 630, 162, 258, 374, 166, 414, 390, 178, 322, 310, 462, 194, 442, 202
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2019

Keywords

Crossrefs

Permutation of A016825.

Programs

  • PARI
    A322992(n) = A289272(1+(2*A289271(n)));
    A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); };

Formula

a(n) = A289272(1+(2*A289271(n))).

A322995 a(1) = 0; for n > 1, a(n) = A000265(A289271(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 9, 5, 1, 1, 17, 1, 3, 9, 33, 1, 17, 1, 65, 1, 5, 1, 7, 1, 1, 33, 129, 3, 9, 1, 257, 65, 5, 1, 11, 1, 17, 9, 513, 1, 129, 1, 1025, 257, 33, 1, 2049, 17, 3, 513, 4097, 1, 7, 1, 8193, 5, 1, 33, 19, 1, 65, 1025, 13, 1, 3, 1, 16385, 2049, 129, 9, 35, 1, 65, 1, 32769, 1, 11, 129, 65537, 4097, 5, 1, 21, 17, 257
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2019

Keywords

Crossrefs

Programs

  • PARI
    A000265(n) = (n/2^valuation(n, 2));
    A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
    A322995(n) = if(1==n,0,A000265(A289271(n)));

Formula

a(1) = 0; for n > 1, a(n) = A000265(A289271(n)).
For all n >= 1, A000120(a(n)) = A001221(n).

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A322988 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(1) = 0 if n is a prime power > 2, f(2) = -1, and f(n) = A322990(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 3, 3, 4, 3, 3, 3, 5, 3, 6, 3, 7, 8, 3, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 3, 15, 3, 6, 3, 3, 16, 17, 18, 19, 3, 20, 21, 22, 3, 8, 3, 23, 24, 25, 3, 26, 3, 27, 28, 29, 3, 30, 31, 32, 33, 34, 3, 35, 3, 36, 37, 3, 38, 11, 3, 39, 40, 10, 3, 41, 3, 42, 43, 44, 45, 13, 3, 46, 3, 47, 3, 48, 49, 50, 51, 52, 3, 15, 53, 54, 55, 56, 57, 58, 3, 59, 60, 61, 3, 16, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2019

Keywords

Comments

For all i, j: a(i) = a(j) => A322989(i) = A322989(j).
For all i, j > 2: A305976(i) = A305976(j) => a(i) = a(j).

Crossrefs

Cf. A322805, A322822 for analogous constructions for filter sequences.

Programs

  • PARI
    up_to = 8192;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); }; \\ Antti Karttunen, Jan 02 2019
    A322990(n) = A289272(A289271(n)>>1);
    A322988aux(n) = if(2==n,-1,if(isprimepower(n),0,A322990(n)));
    v322988 = rgs_transform(vector(up_to,n,A322988aux(n)));
    A322988(n) = v322988[n];

A322989 If n is a power of a prime, then a(n) = 0, otherwise a(n) = 1 + a(A322990(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 1, 0, 3, 2, 1, 0, 2, 0, 1, 0, 3, 0, 2, 0, 0, 2, 1, 4, 3, 0, 1, 2, 4, 0, 2, 0, 3, 4, 1, 0, 2, 0, 1, 2, 3, 0, 1, 4, 5, 2, 1, 0, 3, 0, 1, 5, 0, 4, 2, 0, 3, 2, 3, 0, 6, 0, 1, 2, 3, 5, 2, 0, 4, 0, 1, 0, 3, 4, 1, 2, 6, 0, 3, 5, 3, 2, 1, 4, 2, 0, 1, 7, 3, 0, 2, 0, 6, 4
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2019

Keywords

Comments

For n > 1, a(n) gives the number of edges needed from n to the leftmost branch (where the terms of A000961 are located) in the binary tree illustrated in A289272.

Crossrefs

Programs

  • PARI
    A289271(n) = { my(v=0,i=0,x=1); for(d=2,oo,if(n==1, return(v)); if(1==gcd(x,d)&&1==omega(d), if(!(n%d)&&1==gcd(d,n/d), v += 2^i; n /= d; x *= d); i++)); }; \\ After Rémy Sigrist's program for A289271.
    A289272(n) = { my(m=1, pp=1); while(n>0, pp++; while(!isprimepower(pp)||(gcd(pp,m)>1), pp++); if(n%2, m *= pp); n >>=1); (m); };
    A322989(n) = if((1==n)||isprimepower(n),0,1+A322989(A322990(n)));
    A322990(n) = A289272(A289271(n)>>1);

Formula

If A001221(n) <= 1 [when n is in A000961], then a(n) = 0, otherwise a(n) = 1 + a(A322990(n)).
Showing 1-8 of 8 results.