A289293 Coefficients in expansion of E_6^(1/2).
1, -252, -40068, -10158624, -3362961924, -1254502939032, -502480721822688, -211053631376919744, -91717692784641665028, -40892713821496126310364, -18600635229558474625901928, -8597703758971125751979122656
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..367
Crossrefs
Programs
-
Mathematica
terms = 12; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; E6[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -3*sqrt(2)*Pi^(3/2) / (16*Gamma(3/4)^8) = -0.2903826839827320330247215149377503818798115... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018