cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289295 Coefficients in expansion of E_14^(1/2).

Original entry on oeis.org

1, -12, -98388, -20312544, -5889254484, -2083830070392, -810894400450848, -334381509272710464, -143464412162723380308, -63364234685240118242604, -28614423885137875351570248, -13150804531745894256074689056
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), A289292 (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), this sequence (k=14).
Cf. A058550 (E_14), A289029.

Programs

  • Mathematica
    nmax = 20; s = 14; CoefficientList[Series[Sqrt[1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A289029(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -9 * Pi^(7/2) / (2^(11/2) * Gamma(3/4)^16) = -0.422728335899452596724927626919867458580193404969719... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018