cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A289292 Coefficients in expansion of E_4^(1/2).

Original entry on oeis.org

1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), this sequence (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), this sequence (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7).
Cf. A001421, A004009 (E_4), A110163.

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/2).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(3/2), where c = 3*Gamma(1/3)^9 / (32*sqrt(2)*Pi^(13/2)) = 0.27646925986847687648926173728588572192308632719... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
G.f.: 3F2(1/6, 1/2, 5/6; 1, 1; 1728/j) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 07 2017

A289293 Coefficients in expansion of E_6^(1/2).

Original entry on oeis.org

1, -252, -40068, -10158624, -3362961924, -1254502939032, -502480721822688, -211053631376919744, -91717692784641665028, -40892713821496126310364, -18600635229558474625901928, -8597703758971125751979122656
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), A289292 (k=4), this sequence (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    terms = 12;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -3*sqrt(2)*Pi^(3/2) / (16*Gamma(3/4)^8) = -0.2903826839827320330247215149377503818798115... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018

A289291 Coefficients in expansion of E_2^(1/2).

Original entry on oeis.org

1, -12, -108, -1344, -22044, -409752, -8201088, -172293504, -3746915388, -83625518604, -1904468689368, -44079484775616, -1033852665619200, -24518163456010392, -586936016770722048, -14164129272396668544, -344209494372831399036
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): this sequence (k=2), A289292 (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
Cf. A006352 (E_2), A288968.

Formula

G.f.: Product_{n>=1} (1-q^n)^(A288968(n)/2).
a(n) ~ c / (r^n * n^(3/2)), where r = A211342 = 0.03727681029645165815098078... is the root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24 and c = -0.297340792206337929158904153045493466135450465337136... - Vaclav Kotesovec, Jul 02 2017

A289294 Coefficients in expansion of E_10^(1/2).

Original entry on oeis.org

1, -132, -76428, -12686784, -4629945804, -1581036186312, -643032851554368, -264454897726360704, -114830224962140965068, -50847479367845783084484, -23070238839261012248537688, -10629338992044523324726971456
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), A289292 (k=4), A289293 (k=6), A004009 (k=8), this sequence (k=10), A289295 (k=14).
Cf. A013974 (E_10), A289024.

Programs

  • Mathematica
    nmax = 20; s = 10; CoefficientList[Series[Sqrt[1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A289024(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -3^(3/2) * Pi^(5/2) / (2^(9/2) * Gamma(3/4)^12) = -0.3503612261281732359954402284478780636268623476628... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018

A289569 Coefficients in expansion of 1/E_14^(1/2).

Original entry on oeis.org

1, 12, 98532, 22675584, 16099478436, 6580135809432, 3539736295913088, 1699883073000957696, 871767496424764386468, 438331617201642108107916, 224266585355757815798085192, 114622723650418140746841457536, 58945651172799536532104421386880
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2017

Keywords

Crossrefs

1/E_k^(1/2): A289565 (k=2), A289566 (k=4), A289567 (k=6), A001943 (k=8), A289568 (k=10), this sequence (k=14).
Cf. A287964 (1/E_14), A289029, A289295 (E_14^(1/2)).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 24*Sum[DivisorSigma[13, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(-A289029(n)/2).
a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 0.3764946174077880880364705796802173599460310621830541667074693852949... = 2^(9/2) * Gamma(3/4)^16 / (9 * Pi^(9/2)). - Vaclav Kotesovec, Jul 09 2017, updated Mar 07 2018
Showing 1-5 of 5 results.