cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A289292 Coefficients in expansion of E_4^(1/2).

Original entry on oeis.org

1, 120, -6120, 737760, -107249640, 17385063120, -3014720249760, 547287510713280, -102701836021530600, 19762301660609250840, -3878226140959368843120, 773209219953012480001440, -156173318001506652330786720, 31888935085481430265623676560
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), this sequence (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), this sequence (k=4), A289309 (k=5), A289318 (k=6), A289319 (k=7).
Cf. A001421, A004009 (E_4), A110163.

Programs

  • Mathematica
    terms = 14;
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E4[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A110163(n)/2).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(3/2), where c = 3*Gamma(1/3)^9 / (32*sqrt(2)*Pi^(13/2)) = 0.27646925986847687648926173728588572192308632719... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
G.f.: 3F2(1/6, 1/2, 5/6; 1, 1; 1728/j) where j is the elliptic modular invariant (A000521). - Seiichi Manyama, Jul 07 2017

A289293 Coefficients in expansion of E_6^(1/2).

Original entry on oeis.org

1, -252, -40068, -10158624, -3362961924, -1254502939032, -502480721822688, -211053631376919744, -91717692784641665028, -40892713821496126310364, -18600635229558474625901928, -8597703758971125751979122656
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), A289292 (k=4), this sequence (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
Cf. A013973 (E_6), A288851.

Programs

  • Mathematica
    terms = 12;
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    E6[x]^(1/2) + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 23 2018 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A288851(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -3*sqrt(2)*Pi^(3/2) / (16*Gamma(3/4)^8) = -0.2903826839827320330247215149377503818798115... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018

A289291 Coefficients in expansion of E_2^(1/2).

Original entry on oeis.org

1, -12, -108, -1344, -22044, -409752, -8201088, -172293504, -3746915388, -83625518604, -1904468689368, -44079484775616, -1033852665619200, -24518163456010392, -586936016770722048, -14164129272396668544, -344209494372831399036
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): this sequence (k=2), A289292 (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), A289295 (k=14).
Cf. A006352 (E_2), A288968.

Formula

G.f.: Product_{n>=1} (1-q^n)^(A288968(n)/2).
a(n) ~ c / (r^n * n^(3/2)), where r = A211342 = 0.03727681029645165815098078... is the root of the equation Sum_{k>=1} A000203(k) * r^k = 1/24 and c = -0.297340792206337929158904153045493466135450465337136... - Vaclav Kotesovec, Jul 02 2017

A110150 G.f.: 4th root of Eisenstein series E_10 (cf. A013974).

Original entry on oeis.org

1, -66, -40392, -9009264, -3725341158, -1400292801072, -604993149612720, -262280205541007808, -118717180239835505592, -54520207050101542651506, -25525844887805197307977968, -12095360676632550886664063760, -5797006133905562955666277287792, -2803076705590018145443840156918512
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2005

Keywords

Crossrefs

E_k^(1/4): A289392 (k=2), A289307 (k=4), A289326 (k=6), A289292 (k=8), this sequence (k=10), A289391 (k=14).

Programs

  • Mathematica
    nmax = 20; s = 10; CoefficientList[Series[(1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}])^(1/4), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)

Formula

a(n) ~ c * exp(2*Pi*n) / n^(5/4), where c = -3^(3/4) * Pi^(3/2) / (2^(15/4) * Gamma(3/4)^7) = -0.227361380713650977567497769428903183591275821407342369621... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018
G.f.: Sum_{k>=0} A004984(k) * (33*f(q))^k where f(q) is Sum_{k>=1} sigma_9(k)*q^k. - Seiichi Manyama, Jun 16 2018

A289295 Coefficients in expansion of E_14^(1/2).

Original entry on oeis.org

1, -12, -98388, -20312544, -5889254484, -2083830070392, -810894400450848, -334381509272710464, -143464412162723380308, -63364234685240118242604, -28614423885137875351570248, -13150804531745894256074689056
Offset: 0

Views

Author

Seiichi Manyama, Jul 02 2017

Keywords

Crossrefs

E_k^(1/2): A289291 (k=2), A289292 (k=4), A289293 (k=6), A004009 (k=8), A289294 (k=10), this sequence (k=14).
Cf. A058550 (E_14), A289029.

Programs

  • Mathematica
    nmax = 20; s = 14; CoefficientList[Series[Sqrt[1 - 2*s/BernoulliB[s] * Sum[DivisorSigma[s - 1, k]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 02 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(A289029(n)/2).
a(n) ~ c * exp(2*Pi*n) / n^(3/2), where c = -9 * Pi^(7/2) / (2^(11/2) * Gamma(3/4)^16) = -0.422728335899452596724927626919867458580193404969719... - Vaclav Kotesovec, Jul 02 2017, updated Mar 05 2018

A289568 Coefficients in expansion of 1/E_10^(1/2).

Original entry on oeis.org

1, 132, 93852, 35163744, 18119136156, 8462089683432, 4234179302847648, 2096050696254014016, 1057219212439789539228, 534730176137991079392036, 272470142855167873443179352, 139363825115618499934478625696
Offset: 0

Views

Author

Seiichi Manyama, Jul 08 2017

Keywords

Crossrefs

1/E_k^(1/2): A289565 (k=2), A289566 (k=4), A289567 (k=6), A001943 (k=8), this sequence (k=10), A289569 (k=14).
Cf. A285836 (1/E_10), A289024, A289294 (E_10^(1/2)).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[(1 - 264*Sum[DivisorSigma[9, k]*x^k, {k, 1, nmax}])^(-1/2), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

G.f.: Product_{n>=1} (1-q^n)^(-A289024(n)/2).
a(n) ~ c * exp(2*Pi*n) / sqrt(n), where c = 0.4542595790370690606664796229968194763901027924111318430568304678613... = 2^(7/2) * Gamma(3/4)^12 / (3^(3/2) * Pi^(7/2)). - Vaclav Kotesovec, Jul 09 2017, updated Mar 07 2018
Showing 1-6 of 6 results.