A289302 Expansion of (q*j(q))^(7/24) where j(q) is the elliptic modular invariant (A000521).
1, 217, 245, 231350, -27293420, 4017072017, -643057897118, 109259930443485, -19377905432572925, 3549922504344871655, -666990037937425724641, 127890778891452935279096, -24934077008209243436961385
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..425
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(7/8) / (2*QPochhammer[-1, x])^7, {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *) (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(7/24) + O[q]^13 // CoefficientList[#, q]& (* Jean-François Alcover, Nov 02 2017 *)
Formula
G.f.: Product_{n>=1} (1-q^n)^(7*A192731(n)/24).
a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(15/8), where c = 0.108789720644871714449969800661839212719879897088563371823367481878... = 7 * 3^(7/8) * sqrt(2 - sqrt(2)) * Gamma(1/3)^(21/4) * Gamma(7/8) / (2^(39/8) * exp(7 * Pi / (8 * sqrt(3))) * Pi^(9/2)). - Vaclav Kotesovec, Jul 03 2017, updated Mar 06 2018