cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289363 Primes p such that p^2 + p - 1 is composite.

Original entry on oeis.org

7, 17, 23, 29, 37, 43, 47, 61, 67, 71, 73, 79, 97, 107, 109, 113, 127, 137, 139, 151, 157, 167, 173, 179, 197, 211, 223, 227, 229, 239, 251, 257, 269, 271, 277, 283, 293, 307, 311, 313, 317, 337, 347, 353, 359, 367, 379, 383, 389, 397, 409, 421, 439, 443, 457, 467, 479, 487, 491, 503, 509, 521, 523
Offset: 1

Views

Author

Robert Israel, Jul 04 2017

Keywords

Comments

Includes all primes == 2 (mod 5) or == 3 or 7 (mod 11) except 2 and 3.
If p is in this sequence, p^2 + p is not in A241884 although p^2 + p - 1 is composite.

Crossrefs

Cf. A241884.

Programs

  • Magma
    [p: p in PrimesUpTo(600) | not IsPrime(p^2+p-1)]; // Vincenzo Librandi, Jul 05 2017
  • Maple
    select(t -> isprime(t) and not isprime(t^2+t-1), [seq(i,i=1..1000, 2)]);
  • Mathematica
    Select[Prime[Range[100]], CompositeQ[#^2+#-1]&] (* Jean-François Alcover, Jul 18 2017 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (!isprime(p^2+p-1), print1(p, ", "))); \\ Michel Marcus, Jul 05 2017